MATLAB® Builder for COM

The Language of Technical Computing

Computation
Visualization

Programming

User’s Guide .c ‘\The MathWorks

Version 1

XLy

How to Contact The MathWorks:

www . mathworks.com Web

comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information
508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail

3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

MATLAB Builder for COM
© COPYRIGHT 2002 — 2005 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program

or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used

or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox
are registered trademarks of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www . mathworks.com/patents for more information.

Revision History

July 2002
June 2004

August 2004
October 2004
September 2005

Online only
Online only

Online only
Online only
Online only

New for Version 1.0 (Release 13)

Revised for Version 1.1 (Release 14) Name changed from
MATLAB COM Builder

Revised for Version 1.1.1 (Release 14+)

Revised for Version 1.1.2 (Release 14SP1)

Revised for Version 1.1.5 (Release 14SP3)

Getting Started

1

Building a Deployable Application 1-2
What Is a Project? 1-10
Classesand Methods o, 1-10
VerSiONS .o vv i e e 1-10
Using the Command Line Interface 1-12
Requirements for MATLAB Builder for COM 1-15
System Requirementsc ... 1-15
Compiler Requirements 1-15
Limitations and Restrictions 1-15

Graphical User Interface

2|

MATLABBuilder io.... 2-2
Project Settings Window 2-6
Component Information Window 2-7

Sample Component Information Window 2-7

Package Files Window 2-8

ii

Contents

Programming with COM Objects Created by
MATLAB Builder for COM

3

General Techniques 3-3
Registering and Referencing the Utility Library 3-5
Creating an Instance of a Class in Visual Basic 3-6
CreateObject Function 3-6
Visual Basic New Operator 3-7
Advantages of Each Technique 3-7
Declaring a Reusable Class Instance 3-8
Calling the Methods of a Class Instance 3-9
Variant i e 3-10
Examples of Passing Input and Output 3-10
Calling a COM Object in a C++ Program 3-12
Using COM Builder to Create the Object 3-12
Using the Component in a C++ Program 3-15
Add Events to MATLAB Builder for COM Objects 3-17
Using a Callback with a Visual Basic Event 3-18
Passing Arguments 3-21
Creating and Using a varargin Array in Visual Basic
Programs e 3-21
Creating and using varargout in Visual Basic programs .. 3-22

Using Flags to Control Array Formatting and Data

Conversionttt 3-23
OVeIVIEW oottt it et e e e 3-23
Using MATLAB Global Variables 3-30
Using MATLAB Global Variables in Visual Basic 3-30
Obtaining Registry Information 3-33

Handling Errors During a Method Call 3-35

4|

Magic Square Example 4-2
Creatingthe M-File 4-2
Creatingthe Project 4-2
Building the Project 4-4
Creating the Visual Basic Project 4-5
Creating the User Interface 4-5
Creating the Executable 4-9
Testing the Application 4-9
Packaging the Component 4-9

Spectral Analysis Example 4-11
Building the Component 4-11
Integrating the Component with VBA 4-13
Creating the Visual BasicForm 4-16
Adding The Spectral Analysis Menu Item to Excel 4-21
Savingthe Add-in i, 4-23
Testing The Add-in , 4-24
Package the Component 4-26

Univariate Interpolation 4-27
Building the Component 4-27
Building the Project 4-28
Using the Component in Visual Basic 4-30
Creating the Visual BasicForm 4-32

Matrix Calculator 4-39
Building the Component 4-39
Building the Project 4-41
Using the Component in Visual Basic 4-41
Creating the Visual BasicForm 4-43

Curve Fitting i, 4-52
Building the Component 4-52
Building the Project 4-53

iii

iv

Using the Component in Visual Basic 4-55

Creating the Visual BasicForm 4-56
Bouncing Ball Simulation 4-63
Building the Component 4-63
Building the Project 4-65
Using the Component in Visual Basic 4-65
Creating the Visual BasicForm 4-67
Troubleshooting

5

How MATLAB Builder for COM Works Internally

6

Overview of Internal Processes 6-2
Code Generationciiiiiiiiiennnennnn. 6-2
Create Interface Definitions 6-2
C++ Compilation 6-3
Linking and Resource Binding 6-3
Component Registration 6-3

Component Registration 6-4
Self-Registering Components 6-4
Globally Unique Identifier (GUID) 6-5
Versioningcouiiiin ittt i e 6-6

Data ConversionRules 6-8
Array Formatting Flags 6-18
Data Conversion Flags 6-20

Calling Conventionsciue... 6-22
Producinga COM Classccviiiiiiieinnnnnn.. 6-22
IDL Mapping . ..ottt e e e 6-23
Visual BasicMappingccoiiiiiieennnnn. 6-24

Contents

Functions — Alphabetical List

7

Utility Library

8

Referencing the Utility Classes 8-2
Utility Library Classesccvuiuu... 8-3
Class MWUtIL i it i e 8-3
Class MWFlagscoiiiiiiiiiiiiiiiinnnnn.. 8-10
Class MWStruct 8-16
Class MWField 8-23
Class MWComplex, 8-24
Class MWSparsec.coiiiiiiiiiinennnnnnnn. 8-26
Class MWATIg ... o e i e e et e i 8-29
Enumerations i .. 8-31
Enum mwArrayFormat 8-31
Enum mwDataType0 i, 8-31
Enum mwDateFormat 8-32
Examples

Calling a COM Object in a C++ Program A-2
Passing Arguments, A-3
Using MATLAB Global Variables A4
Querying the Registry A-5

Basic Usage Example: Visual Basic A-6

Creating a Comprehensive Excel Add-in A-7

Comprehensive Examples A-8

Index

vi Contents

Getting Started

Building a Deployable Application
(p. 1-2)

What Is a Project? (p. 1-10)

Using the Command Line Interface
(p. 1-12)

Requirements for MATLAB Builder
for COM (p. 1-15)

How to create and package a COM
component

How MATLAB Builder for COM uses
the specifications in a project

How you can use the mcc command
instead of the GUI to build COM
objects

Software requirements for using
MATLAB Builder for COM

Getting Started

1-2

Building a Deployable Application

To create a deployable COM component and package it for distribution, follow
these steps:

1 Type comtool at the command line in MATLAB.

The MATLAB Builder window appears.

) MATLAB Builder

File Project Build Component Help
rProject File Build Statu
A Eile |
ProjectFiles
Edit | BErmye | E{ear |

2 Click File > New > Project to open the New Project Settings window.

Building a Deployable Application

rProject naming

Component name

Classes

Class name

I Add ==
Remaove

FProjectversion

Froject directory

Erowse... |

rCompiler option
[creste s singleton MCR
™ Build debug version

[Show verbose output

QK | Cancel | Help

New Project Settings

3 Specify names for the component and at least one class that will be part of

the component.

1-3

1 Getting Started

14

Using the New Project Settings Window

Area of Window

How To Use This Area

Component
name

Type the name that you want to use for the
component to be created. This name is also used for
the Dynamic Link Library (DLL) that is created

to implement the component. A component name
cannot match the name of any M-files or MEX-files
added to the project.

Class name

After you type the component name, the GUI
automatically enters a default class name; the
default is the component name with class appended.

For instance, the default class name for a
component named MATLABfunction would be
MATLABfunctionclass

To change the name of the class, add a new class
with the name that you want to use and remove the
class that has the default name.

To add another class to your component, enter the
class name in the Class name box, and click Add>>.
The added class appears in the Classes text box.

Any new classes become part of the newly built
component. Removed classes are removed from the
component on the subsequent build.

Project version

Default value is 1.0. See “Versions” on page 1-10 for
additional information about version numbers.

Building a Deployable Application

Area of Window

How To Use This Area

Project
directory

Specifies where project and build files are written
when compiling and packaging your components.

COM Builder specifies the project directory
automatically, based on the name of your current
directory and the component name. You can accept
the automatically generated project directory path
or specify a different path. Once you click OK in
the Project Settings Window, the specified path is
saved. If you decide to move the project or change
anything on its path, you need to repeat the entire
project specification process, including adding files
to the project.

Create a
singleton MCR
option

Tells COM Builder to generate code that creates only
one instance of the MCR per application. If you click
this option for a component, and a programmer uses
the component more than once in an application,

each instance of the component uses the same MCR.

MCR stands for MATLAB Component Run-time,
which is required to run applications on machines
that do not have MATLAB installed.

Build Debug
version

Enables you to trace back to the point where where
a failure occurred — in the initialization of MCR,
the function call, or the termination routine. This
setting does not affect M-file debugging.

Display verbose
output

Tells COM Builder to show each step in
the build process. This output is saved in
project dir\build.log.

4 Accept the current settings by clicking OK.

COM Builder creates and saves a project file named component_name.cbl
in the project directory..

The project file is part of your project workspace. It contains the names
of any M-files or MEX- files you subsequently add to the project. Adding
these files is the next step.

1-5

1 Getting Started

1-6

5 Click Add File to add methods to the component classes.

Understanding the MATLAB Builder Window

When you save a new project or open an existing project, COM Builder
opens the MATLAB Builder window, which has the following fields and

settings:

Area of Window

How To Use This Area

Menu bar File
commands
Project
Build
Component
Help
Add File Add M-files and/or MEX-files to the project by

clicking Add File or clicking Project > Add File.
You can add only one file at a time to the project.

The name of any file added to the project cannot
duplicate the name of any function existing in the
library of precompiled functions.

Project Files

List of folders and files in the project.

The project folder contains folders that correspond
to classes that you have specified in the Project
Settings window. The files in each class folder
represent MATLAB code that COM Builder will
encapsulate into methods for the classes.For
instance, here is an illustration of a project folder

Building a Deployable Application

Area of Window

How To Use This Area

Build Status

Look at the Build Status panel to view the output
of the build process and discover any problems.

To clear the Build Status panel, click
Build > Clear Status.

The output of the build process is saved in the file
<project _dir>\build.log. To open the Build
Log, click Build > Open Build Log.

If you have reason to contact MathWorks Technical
Support with a question about the build process,
you will be asked to provide a copy of this log.

Edit

To open an M-file for editing, do any of the
following:
¢ Select it and click Edit.

® Double-click the file you want to edit.
® (Click Project > Edit File.

You cannot edit MEX-files.

Remove

To remove a file from the project, do any of the
following:
e Select it and click Remove.

® Double-click the file you want to edit.

¢ (Click Project > Remove File

You can highlight multiple files for removal.

Clear

Click Clear in the MATLAB Builder window to
remove the process log from the status panel.

6 Click Build > COM Object to build the project.

The build process sends intermediate source files to the \src sub-directory
and output files necessary for deployment to the \distrib sub-directory

of your project directory. The files in \distrib are DLLs, which are
automatically registered on your system.

1 Getting Started

1-8

You probably want to test your component before packaging, which is
the next step. After testing the component outside of the MATLAB
environment you can reopen the project and proceed to the next step.

7 Click Component > Package Component to create a self-extracting

executable. COM Builder names this file componentname . exe.

Files in the self-extracting executable

File

Purpose

componentname.ctf

Component Technology File

(ctf) archive. This is a
platform-dependent file that
must correspond to the end user’s
platform.

componentname_projectversion

Component that encapsulates
M-code

_install.bat

Script run by the self-extracting
executable

MCRInstaller.exe

Self-extracting MATLAB
Component Runtime library
utility; platform-dependent file that
must correspond to the end user’s
platform.

MCRInstaller.exe installs
MATLAB Component Runtime
(MCR), which users of your
component need to install on the
target machine once per release.

8 Distribute the self-extracting executable to your users.

Building a Deployable Application

For More Information

Concepts involved in using COM
Builder projects

“What Is a Project?” on page 1-10
“Classes and Methods” on page 1-10

Example of creating a simple
component

“Calling a COM Object in a C++
Program” on page 3-12“Calling a
COM Object in a C++ Program” on
page 3-12

Using the command line instead of
the GUI

4

“Using the Command Line Interface’
on page 1-12

1-9

1 Getting Started

What Is a Project?

1-10

A project contains the files and settings needed by COM Builder to create a
deployable component, or COM object.

COM stands for Component Object Model, which is a software architecture
developed by Microsoft to build component-based applications. COM objects
expose interfaces that allow applications and other components to access the
features of the objects. COM objects are accessible through Visual Basic, C++,
or any language that supports COM objects.

Classes and Methods

The components that COM Builder creates are implemented as classes. Each
class contains a set of functions called methods. COM Builder transforms
MATLAB functions that are included in the component’s project into methods.

When creating a component, you must provide one or more class names as
well as a component name. The component name specifies the name of the
DLL file to be created; this is the file that implements the component. The
class name, on the other hand, denotes the name of the class that performs
a call on a specific method at run-time. To use a component you create,
programmers need to instantiate the class and call its methods.

Typically you should specify names for components and classes that will

be clear to programmers who use your COM objects. For example, if you
are compiling many MATLAB functions, it helps to determine a scheme of
function categories and to create a separate class for each category. Also, the
name of each class should be descriptive of what the class does.

Versions

COM Builder supports a simple versioning mechanism for components by
attaching a version number to a component when it is created. COM Builder
automatically includes the version number in the DLL filename and also in
the system registry information. The default value for the first version of a
component is 1.0.

COM Builder treats classes in different versions of the same component as
distinct, even if the classes have the same name.

What Is a Project?

Using Version Numbers
For changes that you make before packaging the component you should not
change the version number.

After deployment, change the version number for subsequent changes, so that
you can manage the new and old versions.

1-11

1 Getting Started

Using the Command Line Interface

You can use the MATLAB command line interface instead of the GUI to create
COM objects. Do this by issuing the mcc command with options. If you use
mcc, you do not create a project.

Note See the MATLAB Compiler documentation for a complete description
of the mcc command and its options.

The following table provides an overview of some mcc options related to
components, along with syntax and examples of their usage.

How To Use COM Builder on the Command Line

Action to Perform | mcc Option to Use | Description

Create component -W com The W option with com as the type controls the
that has one class. generation of wrapper files, which you can use to
support components.

Syntax
mcc -W com:<component_name>[,<class_name>[,<major>.<minor>]]

An unspecified <class_name> defaults to <component_name>, and an
unspecified version number defaults to the latest version built or 1.0, if
there is no previous version.

Example

mcc -W com:mycomponent,myclass,1.0 -T link:1ib foo.m bar.m

The example creates a COM component called mycomponent, which
contains a single COM class named myclass with methods foo and bar,
and a version of 1.0.

1-12

Using the Command Line Interface

How To Use COM Builder on the Command Line (Continued)

Action to Perform

Add additional
classes to a COM
component.

mcc Option to Use | Description

Not needed A separate COM class with name <class_name> is
created for each class argument that is passed.
Following the <class name> parameter is a
comma-separated list of source files that are
encapsulated as methods for the class.

Syntax

class{<class_name>:[file, [file,...]]}

Example

mcc -B ccom:mycomponent,myclass,1.0 foo.m bar.m class{myclass2:foo2.m, bar2.m}

The example creates a COM component named mycomponent with two
classes: myclass has methods foo and bar, and myclass2 has methods
f002 and bar2. The version is version 1.0.

Simplify the
command line input
for components.

-B ccom: Uses the bundle file.
Syntax

mcc -B <filename>[:<ail1>,<a2>,...,<an>]
Example

mcc -B ccom:mycomponent,myclass,1.0 foo.m bar.m

Control how each
COM class uses the
MCR.

-S By default, a new MCR instance is created for each
instance of each COM class in the component. Use
-S to change the default.

This option tells COM Builder to create a single
MCR is when the first COM class is instantiated.
This MCR is reused and shared among all
subsequent class instances, resulting in more
efficient memory usage and eliminating the MCR
startup cost in each subsequent class instantiation.
When using -S, note that all class instances
share a single MATLAB workspace and share
global variables in the M-files used to build the

1-13

1 Getting Started

How To Use COM Builder on the Command Line (Continued)

Action to Perform | mcc Option to Use | Description

component. This makes properties of a COM
class behave as static properties instead of
instance-wise properties.

Example

mcc -S -B ccom:mycomponent,myclass,1.0 foo.m bar.m

The example creates a COM component called mycomponent containing

Create -d The \src and \distrib subdirectories are needed
subdirectories to package components.
needed for

Syntax

deployment and
copy associated files
to them.

-d directoryname

1-14

Requirements for MATLAB Builder for COM

Requirements for MATLAB Builder for COM

System Requirements

System requirements and restrictions on use for MATLAB Builder for COM
are almost identical to those listed in the MATLAB Compiler documentation.

Compiler Requirements

You must have MATLAB and the MATLAB Compiler installed to install
MATLAB Builder for COM.

MATLAB Builder for COM is available only on Windows. The compilers that
support the building of COM objects are Microsoft Visual C/C++ (versions
6.0 and 7.1).

For an up-to-date list of all the compilers supported by

MATLAB and the MATLAB Compiler, see the MathWorks

Technical Support Department’s Technical Notes at
http://www.mathworks.com/support/tech-notes/1600/1601.shtml.

Limitations and Restrictions

In general, limitations and restrictions on the use of COM Builder are
the same as those for the MATLAB Compiler. See the MATLAB Compiler
documentation for details.

1-15

http://www.mathworks.com/access/helpdesk/help/toolbox/compiler/
http://www.mathworks.com/support/tech-notes/1600/1601.shtml

1 Getting Started

1-16

Graphical User Interface

MATLAB Builder for COM has the following primary windows:

MATLAB Builder (p. 2-2)
Project Settings Window (p. 2-6)
Component Information Window

(p. 2-7)
Package Files Window (p. 2-8)

Serves as the hub of operations with
COM Builder

Helps you specify project properties
for a new or existing project

Shows details about components
created with COM Builder

Helps you specify and create a
self-extracting executable for your
component

2 Graphical User Interface

2-2

MATLAB Builder

The MATLAB function comtool displays the MATLAB Builder graphical
user interface (GUI) window.

«): MATLAB Builder

File Project Build Component Help
rProject File Build Statu
A File |
ProjectFiles
Edit | BErmaye | E{ear

The MATLAB Builder window has the following menus:

¢ “File Menu” on page 2-2

® “Project Menu” on page 2-3

e “Build Menu” on page 2-4

® “Component Menu” on page 2-4

e “Help Menu” on page 2-4

File Menu
Use the File menu to create and manage COM Builder projects.

MATLAB Builder

Mewy Project...
DOpen Project...
Save Froject...
Save Az Project...
Close Project
Close COMTOOL

¢ (Click New Project to open the project settings window, which you can
use to creates a project containing M-files and MEX-files to encapsulate
in COM components.

¢ (Click Open Project to load a previously saved project.

¢ (Click Save Project to save the current project. If you have not yet saved
the current project, you are prompted for a filename.

* (Click Save As Project to save the current project after prompting for
a filename.

¢ (lick Close Project to close the current project.

® Close COMTOOL closes the MATLAB Builder window.

Project Menu
Use the Project menu commands to control and manage the the files and
settings, or properties, for a project.

Add File...
Edit File...
Eemaove File

Settings...

¢ (Click Add File to add an M-file or MEX-file to the current project.

e (Click Edit File to edit the selected M-file. (You can also click Edit File
button to perform this task).

* (Click Remove File to remove the selected M-file. (You can also click
Remove button to perform this task).

2-3

2 Graphical User Interface

2-4

® (Click Settings to view the current project settings. See “Project Settings
Window” on page 2-6 for details.

Build Menu

Use the Build menu to control the building of the project’s files into a COM
object.

SO Object

Clear Status
Spen Build Log

¢ (Click COM Object to build a COM object from the current project files.
¢ (lick Clear Status to clear the Build Status pane.

¢ (Click Open Build Log to display the output of the build process that has
been saved in the log file.

Component Menu

Use the Component menu to package a component and view details about a
component.

Package Component

Component Info...

¢ (Click Package Component to complete the process of producing a
deployable application after you have built and tested the components
in a project.

¢ (Click Component Info to view detailed information about a component
that you have built with COM Builder.

Help Menu

The Help menu provides access to the context-sensitive help for the COM
Builder graphical user interface.

MATLAB Builder

CMETOOL Help
MATLAE Builder far COM

The MATLAB Builder window also includes the following buttons:

¢ (Click Add File to add files to a selected project.
e (Click Edit to edit a selected file.
* (Click Remove to remove selected files.

¢ (Click Clear to remove output from the Build Status pane.

The Build Status pane shows the current build log.

2-5

2 Graphical User Interface

2-6

Project Settings Window

For new projects, click File > New > Project to open the New Project

Settings window.

For existing projects, click File > Open > Project > Settings to open the
Project Settings window.

The project settings are as follows:

Setting

Component name

Class name
Classes
Project version

Project directory

Compiler options

Description

Name of the component you are creating with this
project.

Name of a class that you want to add.
List of classes currently in this project.
Version number of this project.

Location for output files generated by COM Builder,
including the project file

Select Create a singleton MCR if your users can
share a single installation of the MCR.

Select Build debug version to add debugging
information to the classes generated by COM
Builder.

Select Show verbose output to display all details
and create a complete log of the build process.

Component Information Window

Component Information Window
This listing presents the component information that is stored in the registry.
See componentinfo for an explanation of these fields.

Sample Component Information Window

The following window displays information for mycomponent, the component
created in “Calling a COM Object in a C++ Program” on page 3-12.

|| Mame - MYCOMPORENT Jll
B[] Version

E-L11.0

------ # Type Library: mycomponent 1.0 Type Library

------ # Library ID: {1FB0AGB5-B4E7-4229-B495-ADF9835CEFBE}

------ # File Mame: DYWarkdjk_comimycaompanentdistribimycomponent_1_0.dIl
E-_] Classes

EJ Mame: myconfaonentclass

cod Class D0 {0F COSAAD-CERS-4F21-41C4- 38004 30800EA}

~# Program |D: mycomponent. mycomponentelass.1_0

- |nProcess Server: DWorkljk_comimycomponentdistribimycomponent_1_0.dl
| Methods

function [2] = adddaublesix, vi

-# Properties

- @ Events

Name: Imycomponentclass —
[nterface ID: {35FA40FE-46B5-4095-BB22-EF2CEET92576} |

For this particular component there is just one version. The Classes folder
contains information about the DLL, including the Program ID (PROGID).
The Methods folder contains a list of the functions in MATLAB that are
encapsulated and can be called as methods in the class.

2-7

2 Graphical User Interface

Package Files Window

2-8

Use the Package Files window to specify the files and properties that COM
Builder should use to create a self-extracting executable for the component
that you have built.

Click Add File to add files to the package. You do not need to add any files
that are in the project.

Click Remove File to delete files from the package.

Click or clear the Include MCR check box to include or exclude MATLAB
Component Runtime (MCR) from the package. MCR is a stand-alone set of
shared libraries that enables the execution of M-files. MCR provides complete
support for all MATLAB language features.

Click MCR Location to specify the directory location of MCRInstaller.zip.

After you have specified the files that you want to include in the package,
click Create.

Here is an illustration of the Package Files window:

«): Package Files

Add File | Remaove File |
™ Include MCR MCR Lacatian ... |
|| Package Files

UserFiles
System Files
Create... Close

Programming with COM
Objects Created by
MATLAB Builder for COM

General Techniques (p. 3-3)

Registering and Referencing the
Utility Library (p. 3-5)

Creating an Instance of a Class in
Visual Basic (p. 3-6)

Calling the Methods of a Class
Instance (p. 3-9)

Calling a COM Object in a C++
Program (p. 3-12)

Add Events to MATLAB Builder for
COM Objects (p. 3-17)

Passing Arguments (p. 3-21)

Describes the integration of
MATLAB Builder for COM
components into COM-compliant
programs

How to register and reference the
utilities you need in your program

Describes two techniques for calling
a class method (encapsulated
MATLAB function).

Describes how you call the class
methods to access the encapsulated
MATLAB functions.

How to use COM Builder to integrate
a COM object into a C++ program

Describes how you can turn a
MATLAB function into an event
function.

Describes how you can pass multiple
arguments as a varargin array by
creating a Variant array, assigning
each element of the array to the
respective input argument.

3 Programming with COM Objects Created by MATLAB Builder for COM

3-2

Using Flags to Control Array
Formatting and Data Conversion
(p. 3-23)

Using MATLAB Global Variables
(p. 3-30)

Obtaining Registry Information
(p. 3-33)

Handling Errors During a Method
Call (p. 3-35)

Describes array formatting and data
conversion flags.

Describes class properties, which
allow an object to retain an internal
state between method calls.

How to use MATLAB function
componentinfo to query the system
registry for any installed MATLAB
Builder for COM components.

Describes the Visual Basic exception
handling capability.

General Techniques

General Techniques

After you package and install a COM component created by MATLAB Builder
for COM, you can access the component in any program that supports COM,
such as Visual Basic, Visual C++, or Visual C#.

Your code module must

® Load the components created by COM Builder
= “Registering and Referencing the Utility Library” on page 3-5
= “Creating an Instance of a Class in Visual Basic” on page 3-6
e (Call methods of the component class
= “Calling the Methods of a Class Instance” on page 3-9
= “Calling a COM Object in a C++ Program” on page 3-12
= “Add Events to MATLAB Builder for COM Objects” on page 3-17
= “Obtaining Registry Information” on page 3-33
® Deal with data conversion and parameter passing
= “Passing Arguments ” on page 3-21

= “Using Flags to Control Array Formatting and Data Conversion” on
page 3-23

= “Using MATLAB Global Variables” on page 3-30
® Process errors

= “Handling Errors During a Method Call” on page 3-35

3-3

3 Programming with COM Objects Created by MATLAB Builder for COM

3-4

Note These topics provide general information on how to integrate COM
Builder components into your COM-compliant programs. The presentation
focuses on the special programming techniques needed for components based
on MATLAB and generated by COM Builder. It assumes that you have a
working knowledge of the programming language used in these programs.

For information about programming with COM objects in Microsoft Visual
Studio, see articles in the MSDN library, such as Calling COM Components
from .NET Clients.

http://msdn.microsoft.com/library/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/callcomcomp.asp

Registering and Referencing the Utility Library

Registering and Referencing the Utility Library

The MWComUtil library provided with the MATLAB Builder for COM is
freely distributable. The MWComUtil library includes seven classes and three
enumerated types. These utilities are required for array processing, and they
provide type definitions used in data conversion.

The library is contained in the file mvcomutil.d1l. It must be registered once
on each machine that uses components created with COM Builder.

Register the MWComUtil library at the DOS command prompt with the
command

mwregsvr mwcomutil.dll

To use the types in the library, make sure that you reference the MWComUtil
library in your current project:

1 Click Tools > References.

2 Click MWComUtil 7.1 Type Library.

3-5

3 Programming with COM Objects Created by MATLAB Builder for COM

3-6

Creating an Instance of a Class in Visual Basic

Before calling a class method that encapsulates MATLAB functions, you must
create an instance of the class. You can do this in Visual Basic using the
following techniques.

e Using the “CreateObject Function” on page 3-6

® Using the “Visual Basic New Operator” on page 3-7

® “Declaring a Reusable Class Instance” on page 3-8
Each technique has advantages and disadvantages.

For an example of creating a class instance in Visual C++, see “Calling a COM
Object in a C++ Program” on page 3-12.

CreateObiject Function

This method uses the Visual Basic application program interface (API)
CreateObject function to create an instance of the class.

1 Dimension a variable of type Object to hold a reference to the class
instance.

2 Call CreateObject with the Program ID (ProgID) for the class as an
argument.

Here is a programming example:

Function foo(x1 As Variant, x2 As Variant) As Variant
Dim aClass As Object

On Error Goto Handle_Error
aClass = CreateObject("mycomponent.myclass.1_0")
" (call some methods on aClass)
Exit Function
Handle_Error:
foo = Err.Description
End Function

Creating an Instance of a Class in Visual Basic

Visual Basic New Operator

This method uses the Visual Basic New operator on a variable explicitly
dimensioned as the class to be created.

1 Make sure that you reference the type library containing the class in the
current Visual Basic project.

a Open the Visual Basic editor.
b Click Project > References > Available References.

¢ Select the necessary type library.
2 Dimension the class instance.

3 Use New to instantiate the class with a particular name.

The following sample function, foo, shows how to use the New operator to
create a class instance.

Function foo(x1 As Variant, x2 As Variant) As Variant
Dim aClass As mycomponent.myclass

On Error Goto Handle_Error
Set aClass = New mycomponent.myclass
" (call some methods on aClass)
Exit Function
Handle_Error:
foo = Err.Description
End Function

In this example, the class instance could be dimensioned as simply myclass.
The full declaration in the form <component-name>.<class-name> guards
against name collisions that could occur if other libraries in the current
project contain types named myclass.

Advantages of Each Technique

Both techniques (using CreateObject and using New) are equivalent in the
way they function, but each has different advantages. The first technique
does not require a reference to the type library in the Visual Basic project,
while the second results in faster code execution. The second technique has

3-7

3 Programming with COM Objects Created by MATLAB Builder for COM

3-8

the added advantage of enabling Auto-List-Members and Auto-Quick-Info
in the Visual Basic editor to help you work with your classes.

Declaring a Reusable Class Instance

In the previous examples, the class instance used to call the method is a
local variable within a procedure. Thus a new class instance is created and
destroyed for each call to the method. As an alternative, you can declare a
single module-scoped class instance that is reused by all function calls. The
next example shows this technique.

Dim aClass As mycomponent.myclass

Function foo(x1 As Variant, x2 As Variant) As Variant
On Error Goto Handle_Error
If aClass Is Nothing Then
Set aClass = New mycomponent.myclass
End If
" (call some methods on aClass)
Exit Function
Handle_Error:
foo = Err.Description
End Function

Calling the Methods of a Class Instance

Calling the Methods of a Class Instance

After you create a class instance, you can call the class methods to access the
encapsulated MATLAB functions. MATLAB Builder for COM uses a standard
technique to map the original MATLAB function syntax to the method’s
argument list. This standard mapping technique is as follows:

® nargout

When a method has output arguments, the first argument is always
nargout, which is of type Long. This input parameter passes the normal
MATLAB nargout parameter to the encapsulated function and specifies
how many outputs are requested. Methods that do not have output
arguments do not pass a nargout argument.

® QOutput parameters

Following nargout are the output parameters listed in the same order as
they appear on the left side of the original MATLAB function.

® Input parameters

Next come the input parameters listed in the same order as they appear on
the right side of the original MATLAB function.

For example, the most generic MATLAB function is

function [Y1, Y2, ..., varargout] = foo(X1, X2, ..., varargin)
This function maps directly to the following Visual Basic signature:

Sub foo(nargout As Long, _

Y1 As Variant, _
Y2 As Variant, _

varargout As Variant, _
X1 As Variant, _
X2 As Varaint, _

varargin As Variant)

3-9

3 Programming with COM Objects Created by MATLAB Builder for COM

3-10

See “Calling Conventions” on page 6-22 for more details and examples of the
standard mapping from MATLAB functions to COM class method calls.

Variant

All input and output arguments are typed as Variant, the default Visual
Basic data type. The Variant type can hold any of the basic Visual Basic
types, arrays of any type, and object references. See “Data Conversion Rules’
on page 6-8 for details about the conversion of any basic type to and from
MATLAB data types.

4

In general, you can supply any Visual Basic type as an argument to a class
method, with the exception of Visual Basic User Defined Types (UDTs).

When you pass a simple Variant type as an output parameter, the called
method allocates the received data and frees the original contents of the
Variant. In this case it is sufficient to dimension each output argument as
a single Variant. When an object type (like an Excel Range) is passed as an
output parameter, the object reference is passed in both directions, and the
object’s Value property receives the data.

Examples of Passing Input and Output

The following examples show how to pass input and output parameters to
COM Builder component class methods in Visual Basic.

The first example is a function, foo, that takes two arguments and returns one
output argument. The foo function dispatches a call to a class method that
corresponds to a MATLAB function of the form function y = foo(x1,x2).

Function foo(x1 As Variant, x2 As Variant) As Variant
Dim aClass As Object
Dim y As Variant

On Error Goto Handle_Error
aClass = CreateObject("mycomponent.myclass.1_0")
Call aClass.foo(1,y,x1,x2)
foo =y
Exit Function
Handle_Error:

Calling the Methods of a Class Instance

foo = Err.Description
End Function

The second example rewrites the foo function as a subroutine.

Sub foo(Xout As Variant, X1 As Variant, X2 As Variant)
Dim aClass As Object

On Error Goto Handle_Error
aClass = CreateObject("mycomponent.myclass.1_0")
Call aClass.foo(1,Xout,X1,X2)
Exit Sub
Handle_Error:
MsgBox (Err.Description)
End Sub

3-11

3 Programming with COM Objects Created by MATLAB Builder for COM

3-12

Calling a COM Object in a C++ Program

The following steps show you how to create a COM object with MATLAB
Builder for COM and call that same object in a C++ program.

Note You must choose a Microsoft compiler to compile and use any COM
object.

Using COM Builder to Create the Object
Build the COM object as follows:

2

Start MATLAB.
Execute the following command in MATLAB:

mbuild -setup

Be sure to choose a Microsoft compiler.

Open the MATLAB Editor and create a file named adddoubles.m with
the following M-code:

function z=adddoubles(x,y)
Z=Xty;

In the MATLAB Command Window, issue the following command:

comtool

The MATLAB Builder window opens.

Create a COM project as follows:
a From the menu bar in MATLAB Builder, click File > New Project.

b Type mycomponent as the component name.

COM Builder automatically fills in the class name as mycomponentclass

and adds the class to the Classes box, as shown:

Calling a COM Obiject in a C++ Program

-g’L'; Mew Project Settings
rProject naming

Component name

mycomponenﬂ

Classes

Class name mycomponentelass

I Add ==
Remaove

Frojectversion

fr.0

Froject directary

|H:11mycomp0nent

Erowse...

rCompiler aption

[T Creste s singleton MCR
™ Build debug version

[Show verbose output

QK | Cancel | Help |

¢ Click OK to save the project settings.

d If you are prompted to confirm whether you want to create a directory
named mycomponent click Yes.

Select the folder named mycomponentclass in the left panel of the
MATLAB Builder window and click Add File.

In the Add file to project dialog box, click adddoubles.m and click Open.

Open the mycompponentclass and M-files folders in the MATLAB Builder
window.

You can see that the M-file has been added to the project in the
mycomponentclass folder. This means that the MATLAB function,
adddoubles, will be a method in mycomponentclass.

From the MATLAB Builder menu bar click Build > COM Object, as
shown:

3-13

3 Programming with COM Objects Created by MATLAB Builder for COM

File Project | Build | Component Help
rProject Files—
Add File ExcelfCOM Object

|1 Project Fil Clear Status
B Jm Dpen Build Log

o DWYorKjk_cormadddoubles.m
MEX-files

COM Builder generates a self-registering COM object that you can use in
your C++ code.

The Build Status pane in the MATLAB Builder window displays the
output of the build process, as shown:

File Project Build Component Help
rFroject File BEuild Statu

i EEEEER] N
__AddFie | e =l
|| ProjectFiles ocidl.idl

= ponent oleidl.id]
LI W-files serdprov.idl

-4 DWWorkijk_comiadddaubles.m urlman.idl

MEX-files msxml.idl
rmwcamtypes.idl
oaidl.acf
ocidl.act

Creating distrib directory.

Maoving files to distrib.

Registering new lacation of DLL.

rwregsyr DAWWorkljlk_comimycomponentidistribim
Creating file list for deployment package.

Creating installation script far deployment.

Standalone DLL build complete. -

Edit Remaove Clear

Note Scroll horizontally and vertically to see all of the output from the
build process.

3-14

Calling a COM Obiject in a C++ Program

Using the Component in a C++ Program
Use the COM object you have created as follows:

1 Create a C++ program in a file named matlab_com_example.cpp with
the following code:

#include <iostream>

using namespace std;

// include the following files generated by MATLAB Builder for COM
#include "mycomponent\src\mycomponent_idl.h"

#include "mycomponent\src\mycomponent_idl_i.c"

int main() {
// Initialize argument variables
VARIANT x, y, outt;
//Initialize the COM library
HRESULT hr = CoInitialize(NULL);
//Create an instance of the COM object you created
Imycomponentclass *pImycomponentclass;
hr=CoCreateInstance
(CLSID_mycomponentclass, NULL, CLSCTX_INPROC_SERVER, IID_Imycomponentclass,
(void **)&pImycomponentclass);
// Set the input arguments to the COM method
X.vt=VT_R8;
y.vt=VT_R8;
x.dblval=7.3;
y.dblvVal=1946.0;
// Access the method with arguments and receive the output outt
hr=(pImycomponentclass -> adddoubles(1,&outl,x,y));
// Print the output
cout << "The input values were " << x.dblval << " and "
<< y.dblval << ".\n";
cout << "The output of feeding the inputs into the adddoubles method is " <<
out1.dblval << ".\n";
// Uninitialize COM
CoUninitialize();

return 0;

3-15

3 Programming with COM Objects Created by MATLAB Builder for COM

3-16

2 In the MATLAB Command Window, compile the program as follows:

mbuild matlab_com_example.cpp

When you run the executable, the program displays two numbers and their
sum, as returned by the COM object’s adddoubles, as shown:

D:xWorksjk_com>matlab_com_example
The input values were 7.3 and 1946.
The output of feeding the inputs into the adddoubles method iz 1953.3.

D= Worksjk_com?>

To distribute this program to users who do not have MATLAB, see “Package
Files Window” on page 2-8.

Add Events to MATLAB Builder for COM Obijects

Add Events to MATLAB Builder for COM Objects

MATLAB Builder for COM supports events, or callbacks, through a MATLAB
language pragma. A pragma is a directive to COM Builder, beyond what is
conveyed in the MATLAB language itself. The pragma for adding events is
#event.

MATLAB interprets the %#event statement as a comment. But when COM
Builder encapsulates a function, the #event pragma tells COM Builder that
the function requires an outgoing interface and an event handler.

To use the #event pragma:

1 Write the code for a MATLAB function stub that serves as the prototype for
the event. This function stub is the event function.

2 Build the COM component as usual. Make sure that you specify the event
function you wrote in MATLAB as a method in the component class.

3 In your application, add the code to implement the event handler (the event
handler belongs to the COM object created by COM Builder). The code for
the event handler should implement the event function, or function stub,
that you wrote in MATLAB.

When an encapsulated MATLAB function (now a method in a COM object in
your application) calls the event function, the call is dispatched to the event
handler in the application.

Some examples of how you might use callbacks in your code are

® To give the application periodic feedback during a long-running calculation
by an encapsulated MATLAB function. For example, if you have a task that
requires n iterations, you might signal an event to increment a progress
bar in the user interface on each iteration.

® -To signal a warning during a calculation but continue execution of the task.

e To return intermediate results of a calculation to the user and continue
execution of the task.

3-17

3 Programming with COM Objects Created by MATLAB Builder for COM

Using a Callback with a Visual Basic Event

The example in this topic shows how to use a callback in conjunction with a
Visual Basic ProgressBar control.

The MATLAB function iterate runs through n iterations and fires an event
every inc iterations. When the function finishes, it returns a single output.
To simulate actually doing something, the sample code includes a pause
statement in the main loop so that the function waits for 1 second in each
iteration.

The sample includes MATLAB functions iterate.m and progress.m

iterate.m

function [x] = iterate(n,inc)
%initialize x

x = 0;
% Run n iterations, callback every inc time
k = 0;
for i=1:n
k =k + 1;
if k == inc
progress(i);
k = 0;
end;
% Do some work on x...
X =X+ 1;
% Pause for 1 second to simulate doing
% something
pause(1);
end;
progess.m

function progress(i)
s#event
i

The iterate function runs through n iterations and calls the progress
function every inc iterations, passing the current iteration number as an

3-18

Add Events to MATLAB Builder for COM Obijects

argument. When this function is executed in MATLAB, the value of i is
displayed each time the progress function gets called.

Suppose you create a COM Builder component that has these two functions
included as class methods. For this example the component has a single class
named myclass. The resulting COM class has a method iterate and an
event progress.

To receive the event calls, implement a “listener” in the application. The
Visual Basic syntax for the event handler for this example is

Sub aClass_progress(ByvVal i As Variant)

where aClass is the variable name used for your class instance. The Byval
qualifier is used on all input parameters of an event function. To enable
the listening process, dimension the aClass variable with the WithEvents
keyword.

This example uses a simple Visual Basic form with three TextBox controls,
one CommandButton control, and one ProgressBar control. The first text box,
Text1, inputs the number of iterations, stored in the form variable N. The
second text box, Text2, inputs the callback increment, stored in the variable
Inc. The third text box, Text3, displays the output of the function when it
finishes executing. The command button, Command1, executes the iterate
method on your class when pressed. The progress bar control, ProgressBari,
updates itself in response to the progress event.

'"Form Variables

Private WithEvents aClass As myclass 'Class instance
Private N As Long "Number of iterations
Private Inc As Long 'Callback increment

Private Sub Form_Load()
'When form is loaded, create new myclass instance
Set aClass = New myclass
'Initialize variables
N =2
Inc =1
End Sub
Private Sub Texti1_Change()
'Update value of N from Text1 text whenever it changes

3-19

3 Programming with COM Objects Created by MATLAB Builder for COM

On Error Resume Next
N = CLng(Text1.Text)
If Err <> 0 Then N = 2
If N<2 Then N = 2
End Sub
Private Sub Text2_Change()
'"Update value of Inc from Text2 text whenever it changes
On Error Resume Next
Inc = CLng(Text2.Text)
If Err <> 0 Then Inc =
If Inc <= 0 Then Inc =
End Sub
Private Sub Commandi_Click()
'Execute function whenever Execute button is clicked
Dim x As Variant
On Error GoTo Handle_Error
'Initialize ProgressBar
ProgressBar1.Min = 1
ProgressBari.Max N
Text3.Text = ""
'Iterate N times and call back at Inc intervals
Call aClass.iterate(1, x, CDb1l(N), CDbl(Inc))
Text3.Text = Format(x)
Exit Sub
Handle_Error:
MsgBox (Err.Description)
End Sub
Private Sub aClass_progress(ByvVal i As Variant)
'"Event handler. Called each time the iterate function
‘calls the progress function. Progress bar is updated
'with the value passed in, causing the control to advance.
ProgressBari.Value = i
End Sub

1
1

3-20

Passing Arguments

Passing Arguments

When it encapsulates MATLAB functions, MATLAB Builder for COM adds
the MATLAB function arguments to the argument list of the class methods it
creates. Thus, if a MATLAB function uses varargin and/or varargout, COM
Builder adds these arguments to the argument list of the class method. They
are added at the end of the argument list for input and output arguments.

You can pass multiple arguments as a varargin array by creating a Variant
array, assigning each element of the array to the respective input argument.

See “Producing a COM Class” on page 6-22 for more information about
mapping of input and output arguments.

Creating and Using a varargin Array in Visual Basic
Programs

The following example creates a varargin array to call a method
encapsulating a MATLAB function of the form y = foo(varargin).

The MWUtil class included in the MWComUtil utility library provides the
MwWPack helper function to create varargin parameters.

Function foo(x1 As Variant, x2 As Variant, x3 As Varaint, _
x4 As Variant, x5 As Variant) As Variant
Dim aClass As Object
Dim v(1 To 5) As Variant
Dim y As Variant

On Error Goto Handle Error

v(1) = x1
v(2) = x2
v(3) = x3
v(4) = x4
v(5) = x5

aClass = CreateObject("mycomponent.myclass.1_0")
Call aClass.foo(1,y,V)
foo =y
Exit Function
Handle_Error:

3-21

3 Programming with COM Objects Created by MATLAB Builder for COM

3-22

foo = Err.Description
End Function

Creating and using varargout in Visual Basic
programs

The next example processes a varargout argument as three separate
arguments. This function uses the MWUnpack function in the utility library.

The MATLAB function used is varargout = foo(x1,x2).

Sub foo(Xout1 As Variant, Xout2 As Variant, Xout3 As Variant, _

Xin1 As Variant, Xin2 As Variant)
Dim aClass As Object
Dim auUtil As Object
Dim v As Variant

On Error Goto Handle_Error
aUtil = CreateObject("MWComUtil.MWUtil")
aClass = CreateObject("mycomponent.myclass.1_0")
Call aClass.foo(3,v,Xin1,Xin2)
Call aUtil.MwUnpack(v,0,True,Xout1,Xout2,Xout3)
Exit Sub
Handle_Error:
MsgBox (Err.Description)
End Sub

Using Flags to Control Array Formatting and Data Conversion

Using Flags to Control Array Formatting and Data

Conversion

Generally, you should write your application code so that it matches the
arguments (input and output) of the MATLAB functions that are encapsulated
in the COM objects that you are using. The mapping of arguments from
MATLAB to Visual Basic is fully described in MATLAB to COM VARIANT
Conversion Rules on page 6-11 and COM VARIANT to MATLAB Conversion
Rules on page 6-15.

In some cases it is not possible to match the two kinds of arguments exactly;
for example, when existing MATLAB code is used in conjunction with a third
party product such as Microsoft Excel. For these and other cases, COM
Builder supports formatting and conversion flags that control how array data
is formatted in both directions (input and output).

Overview

When it creates a component, COM Builder includes a component property
named MWFlags. The MWFlags property is readable and writable.

The MWFlags property consists of two sets of constants: array formatting flags
and data conversion flags. Array formatting flags affect the transformation of
arrays, whereas data conversion flags deal with type conversions of individual
array elements.

Array Formatting Flags

The following tables provide a quick overview of how to use array formatting
flags to specify conversions for input and output arguments.

3-23

3 Programming with COM Objects Created by MATLAB Builder for COM

3-24

Name of Flag Possible Values of Flag Results of Conversion

InputArrayFormat mwArrayFormatMatrix MATLAB matrix from general
(default) Variant data.
mwArrayFormatCell MATLAB cell array from general

Variant data.

Array data from an Excel range is coded in Visual Basic as an
array of Variant. Since MATLAB functions typically have matrix
arguments, using the default setting makes sense when you are
dealing with data from Excel.

OutputArrayFormat mwArrayFormatAsIs Array of Variant

Converts arrays according to the default conversion rules listed in
MATLAB to COM VARIANT Conversion Rules on page 6-11.

mwArrayFormatMatrix A Variant containing an array of
a basic type.

mwArrayFormatCell MATLAB cell array from general
Variant data.

AutoResizeOQutput When this flag is set, the target
range automatically resizes to fit
the resulting array. If this flag is
not set, the target range must be at
least as large as the output array
or the data is truncated.

Use this flag for Excel Range objects passed directly as output
parameters.

TransposeOutput Transposes all array output.

Use this flag when dealing with an encapsulated MATLAB function
whose output is a one-dimensional array. By default, MATLAB
handles one-dimensional arrays as 1-by-n matrices (that is, as row
vectors). Change this default with the TransposeOutput flag if
you prefer column output

Using Flags to Control Array Formatting and Data Conversion

Using Array Formatting Flags
To use the following example make sure that you reference the MWComUtil
library in the current project:

1 Click Tools > References.

2 Click MWComUtil 7.1 Type Library.
Consider the following Visual Basic function definition for foo.

Sub foo()
Dim aClass As mycomponent.myclass
Dim var1(1 To 2, 1 To 2), var2 As Variant
Dim x(1 To 2, 1 To 2) As Double
Dim y1,y2 As Variant

On Error Goto Handle_Error
var1(1,1) = 11#
vari(1,2) = 12#
vari(2,1) = 21#
vari(2,2) = 22#
x(1,1) = 11
x(1,2 12
x(2,1 21
x(2,2) = 22
var2 = x
Set aClass = New mycomponent.myclass
Call aClass.foo(1,y1,vart)
Call aClass.foo(1,y2,var2)
Exit Sub
Handle_Error:
MsgBox (Err.Description)
End Sub

)
)
)

The example has two Variant variables, var1 and var2. These two variables
contain the same numerical data, but internally they are structured
differently; one is a 2-by-2 array of variant and the other is a 1-by-1 array of
variant. The variables are described in the following table

3-25

3 Programming with COM Objects Created by MATLAB Builder for COM

3-26

Numerical data

Internal structure in
Visual Basic

Result of conversion by
COM Builder according
to the default data
conversion rules

varl

11 12
21 22

2-by-2 array of Variant.

Each variant is a
1-by-1 array of Double.

2-by-2 cell array. Each
element is a 1-by-1
array of double.

var2

11 12
21 22

1-by-1 Variant, which
contains a 2-by-2 array
of Double

2-by-2 matrix. Each
element is a Double.

The InputArrayFormat flag controls how the arrays are handled. In this
example, the value for the InputArrayFormat flag is the default, which is
mwArrayFormatMatrix. The default causes an array to be converted to a

matrix. See the table for the result of the conversion of var2.

To specify a cell array (instead of a matrix) as input to the function call, set
the InputArrayFormat flag to mwArrayFormatCell instead of the default.

Do this in this example by adding the following line after creating the class
and before the method call.

aClass .MWFlags.ArrayFormatFlags.InputArrayFormat =

mwArrayFormatCell

Setting the flag to mwArrayFormatCell causes all array input to the
encapsulated MATLAB function to be converted to cell arrays.

Modifying Output Format. Similarly, you can manipulate the format of
output arguments using the OutputArrayFormat flag. You can also modify
array output with the AutoResizeOutput and TransposeOutput flags.

Using Data Conversion Flags

Two data conversion flags, CoerceNumericToType and InputDateFormat,
govern how numeric and date types are converted from Visual Basic to

MATLAB.

Using Flags to Control Array Formatting and Data Conversion

To use the following example make sure that you reference the MWComUtil
library in the current project:

1 Click Tools > References.

2 Click MWComUtil 7.1 Type Library.

This example converts var1 of type Variant/Integer to an int16 and var2 of
type Variant/Double to a double.

Sub foo()
Dim aClass As mycomponent.myclass
Dim var1, var2 As Variant
Dim y As Variant

On Error Goto Handle_Error
varil = 1
var2 = 2#
Set aClass = New mycomponent.myclass
Call aClass.foo(1,y,var1,var2)
Exit Sub
Handle_Error:
MsgBox (Err.Description)
End Sub

If the original MATLAB function expects doubles for both arguments, this
code might cause an error. One solution is to assign a double to vari, but
this may not be possible or desirable. As an alternative, you can set the
CoerceNumericToType flag to mwTypeDouble, causing the data converter to
convert all numeric input to double. To do this, place the following line after
creating the class and before calling the methods.

aClass .MWFlags.DataConversionFlags.CoerceNumericToType =
mwTypeDouble

The next example shows how to use the InputDateFormat flag, which controls
how the Visual Basic Date type is converted. The example sends the current
date and time as an input argument and converts it to a string.

Sub foo()
Dim aClass As mycomponent.myclass

3-27

3 Programming with COM Objects Created by MATLAB Builder for COM

Dim today As Date
Dim y As Variant

On Error Goto Handle_Error

today = Now

Set aClass = New mycomponent.myclass

aClass. MWFlags.DataConversionFlags.InputDateFormat =
mwDateFormatString

Call aClass.foo(1,y,today)

Exit Sub
Handle_Error:

MsgBox (Err.Description)
End Sub

The next example uses an MWArg object to modify the conversion flags for
one argument in a method call. In this case the first output argument (y1)
is coerced to a Date, and the second output argument (y2) uses the current
default conversion flags supplied by aClass.

Sub foo(y1l As Variant, y2 As Variant)
Dim aClass As mycomponent.myclass
Dim ytemp As MWArg
Dim today As Date

On Error Goto Handle_Error

today = Now

Set aClass = New mycomponent.myclass
Set ytemp = New MWArg
ytemp.MWFlags.DataConversionFlags.OutputAsDate = True
Call aClass.foo(2, ytemp, y2, today)
y1 = ytemp

Exit Sub

Handle_Error:

MsgBox (Err.Description)

End Sub

3-28

Using Flags to Control Array Formatting and Data Conversion

Special Flags for Some Visual Basic Types

In general, you use the MWFlags class property to change specified behaviors
of the conversion from Visual Basic Variant types to MATLAB types, and vice
versa. There are some exceptions — some types generated by COM Builder
have their own MWFlags property. When you use these particular types, the
method call behaves according to the settings of the type and not of the class
containing the method being called. The exceptions are for the following types
generated by COM Builder:

® MWStruct
® MWField
® MWComplex

* MWSparse
* MWArg

Note The MWArg class is supplied specifically for the case when a particular
argument needs different settings from the default class properties.

3-29

3 Programming with COM Objects Created by MATLAB Builder for COM

Using MATLAB Global Variables

Global variables are variables that are declared in MATLAB with the global
keyword. COM Builder automatically converts all global variables shared by
the M-files that make up a class to properties on that class. Class properties

allow an object to retain an internal state between method calls.

Properties are particularly useful when you have a large array containing
values that do not change often, but you need to operate on it frequently. In
this case, you can set the array once as a class property and operate on it
repeatedly without incurring the overhead of passing (and converting) the
data for passing to each method every time it is called.

Using MATLAB Global Variables in Visual Basic

The following example shows how to use a class property in a matrix
factorization class. The example develops a class that performs Cholesky, LU,
and QR factorizations on the same matrix. It stores the input matrix (coded
as Ain MATLAB) as a class property so that it does not need to be passed

to the factorization routines.

Consider these three M-files.

Cholesky.m

function [L] = Cholesky()
global A;
if (isempty(A))
L=1[1;
return;
end
L = chol(A);

LUDecomp.m

function [L,U] = LUDecomp()
global A;
if (isempty(A))
L=11;
u=1»1;

3-30

Using MATLAB Global Variables

return;
end
[L,U] = Llu(A);
QRDecomp.m

function [Q,R] = QRDecomp()
global A;
if (isempty(A))
Q=11;
R=1[1;
return;
end
[Q,R] = qr(A);

These three files share a common global variable A. Each function performs a
matrix factorization on A and returns the results.

To build the class:
1 Create a new COM Builder project named mymatrix with a version of 1.0.
2 Add a single class called myfactor to the component.

3 Add the above three M-files to the class.

4 Build the component.

To test your application, make sure that you reference the library generated
by COM Builder in the current Visual Basic project:

1 Click Project > References in the Visual Basic main menu.
2 (Click mymatrix 1.0 Type Library.
Use the following Visual Basic subroutine to test the myfactor class.

Sub TestFactor

Sub TestFactor()
Dim x(1 To 2, 1 To 2) As Double

3-31

3 Programming with COM Objects Created by MATLAB Builder for COM

Dim C As Variant, L As Variant, U As Variant, _

Q As Variant, R As Variant
Dim factor As myfactor

On Error GoTo Handle Error
Set factor = New myfactor
x(1, 1) = 2#

x(1, 2) = -1#
x(2, 1) = -1#
x(2, 2) = 24

factor.A = Xx
Call factor.cholesky(1, C)
Call factor.ludecomp(2, L, U)
Call factor.qrdecomp(2, Q, R)
Exit Sub

Handle_Error:
MsgBox (Err.Description)

End Sub

Run the subroutine, which does the following:

1 Creates an instance of the myfactor class.
2 Assigns a double matrix to the property A.

3 Calls the three factorization methods.

3-32

Obtaining Registry Information

Obtaining Registry Information

When programming with COM components you might need details about a
component. You can use componentinfo, which is a MATLAB function, to
query the system registry for details about any installed MATLAB Builder
for COM component.

This example queries the registry for a component named mycomponent and
a version of 1.0. This component has four methods: mysum, randvectors,
getdates, and myprimes, two properties: m and n, and one event: myevent.

Info = componentinfo('mycomponent', 1, 0)

Info

Name: 'mycomponent'’
TypeLib: 'mycomponent 1.0 Type Library'
LIBID: '{3A14AB34-44BE-11D5-B155-00D0B7BA7544}"

MajorRev: 1

MinorRev: 0O

FileName: 'D:\Work\ mycomponent\distrib\mycomponent 1 0.d11'
Interfaces: [1x1 struct]

CoClasses: [1x1 struct]

Info.Interfaces
ans =

Name: 'Imyclass’
IID: '{3A14AB36-44BE-11D5-B155-00D0B7BA7544}"

Info.CoClasses
ans =
Name: 'myclass'
CLSID: '{3A14AB35-44BE-11D5-B155-00D0B7BA7544}"'
ProgID: 'mycomponent.myclass.1_0'

VerIndProgID: 'mycomponent.myclass'
InprocServer32:'D:\Work\mycomponent\distrib\mycomponent 1 _0.d11'

3-33

3 Programming with COM Objects Created by MATLAB Builder for COM

Methods: [1x4 struct]
Properties: {'m', 'n'}
Events: [1x1 struct]
Info.CoClasses.Events.M
ans =
function myevent(x, y)
Info.CoClasses.Methods
ans =
1x4 struct array with fields:
IDL
M
C
VB
Info.CoClasses.Methods.M
ans =
function [y] = mysum(varargin)
ans =

function [varargout] = randvectors()

ans =

function [x] getdates(n, inc)

ans =

function [p] = myprimes(n)

The returned structure contains fields corresponding to the most important
information from the registry and type library for the component.

3-34

Handling Errors During a Method Calll

Handling Errors During a Method Call

If your application generates an error while creating a class instance or
during a class method call, the current procedure creates an exception.

Visual Basic provides an exception handling capability through the On Error
Goto <label> statement, in which the program execution jumps to <label>
when an error occurs. (<label> must be located in the same procedure as the
On Error Goto statement). All errors in Visual Basic are handled this way,
including errors within the MATLAB code that you have encapsulated into

a COM object. An exception creates a Visual Basic ErrObject object in the
current context in a variable called Err.

See the Visual Basic documentation for a detailed discussion on Visual Basic
error handling.

3-35

3 Programming with COM Objects Created by MATLAB Builder for COM

3-36

Usage Examples

Magic Square Example (p. 4-2)

Spectral Analysis Example (p. 4-11)

Univariate Interpolation (p. 4-27)

Matrix Calculator (p. 4-39)

Curve Fitting (p. 4-52)

Bouncing Ball Simulation (p. 4-63)

Demonstrates the creation of a COM
component from a simple MATLAB
M-file.

Shows the creation of a
comprehensive Excel add-in.

Uses Akima’s Univariate
Interpolation example available on
the MathWorks Web site.

Creates a matrix calculator and
shows how to compile the MATLAB
functions into a COM component.

Demonstrates the optimal fitting of
a nonlinear function to a set of data.

An adaptation of the ballode demo
provided with core MATLAB.

4 Usage Examples

Magic Square Example

4-2

This example uses a simple M-file that takes a single input and creates

a magic square of that size. It then builds a MATLAB Builder for COM
component using this M-file as a class method. Finally, the example shows
the integration of this component into a stand-alone Visual Basic application.
The application accepts the magic square size as input and displays the
matrix in a ListView control box.

Note ListView is a Windows Form control that displays a list of items with
icons. You can use a list view to create a user interface like the right pane
of Windows Explorer. See the MSDN Libray for more information about
Windows Form controls.

Creating the M-File

To get started, create the M-file mymagic.m containing the following code:

function y = mymagic(x)
y = magic(x);

Creating the Project
Enter the command comtool to display the MATLAB Builder window.

Click File > New Project to open the New Project Settings dialog box, as
shown.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbcon/html/vboriWinFormsControls.asp

Magic Square Example

Component name

Classes

Class name

I Add ==
Remaove

FProjectversion

Froject directory

Erowse... |

rCompiler option

[creste s singleton MCR
™ Build debug version

[Show verbose output

Ok | Cancel | Help

Empty New Project Settings Dialog Box

In the New Project Settings dialog box, enter the settings for this example:

1 In the Component name text block, type the component name magicdemo

and press Enter.

COM Builder automatically creates magicdemoclass as the class name
based on the component name and lists the class in the Classes field.

2 The version has a default of 1.0. Leave this number unchanged.

3 The Project directory field contains a default combination of the directory
where COM Builder was started and the component name, magicdemo.
You can change this to any directory that you choose. If the directory you

choose does not exist, you will be asked to create it.

4 Leave all compiler options unselected.

The New Project Settings dialog box now looks like the following figure:

4-3

4 Usage Examples

4-4

4\ Hew Project Settings
rProject naming

i (=1)

Component name

Imagicdemo

Class name

I Add ==
Remaove

Frojectversion

Classes

magicdemoaclass

fr.0

Froject directary

|H:11magicdem0

Erowse...

rCompiler aption

[T Creste s singleton MCR
™ Build debug version

[Show verbose output

Ok | Cancel |

Help

New Project Settings with Entries

¢ (Click OK to create the magicdemo project.

Summary of Project Settings
Component name: magicdemo

Class name: magicdemoclass

Project version: 1.0

Project directory: (accept default or choose another directory)

Compiler options: (leave all unselected)

Building the Project

® In the MATLAB Builder window, select the magicdemoclass folder..

* (Click Add File.

Magic Square Example

o Select the file mymagic.m from the directory where you saved it and click

Open.

¢ (Click Build > COM Object.

Creating the Visual Basic Project

Note This procedure assumes that you are using Visual Basic 6.0.

1 Start Visual Basic.

2 In the New Project dialog box, select Standard EXE as the project type
and click Open. This creates a new Visual Basic project with a blank form.

3 From the main menu, click Project > References to display the Project
References dialog box.

4 Select magicdemo 1.0 Type Library from the list of available

components.

5 Returning to the Visual Basic main menu, click Project > Components to
display the Components dialog box.

6 Click Microsoft Windows Common Controls 6.0. You will use the
ListView control from this component library.

Creating the User Interface

After you create the project, add a series of controls to the blank form. The
required settings are summarized in the following table.

Control
Control Type Name Properties Purpose
Frame Frame1 Caption = Magic Squares | Groups controls
Demo
Label Labelt Caption = Magic Square | Labels the magic square edit

Size

box.

4-5

4 Usage Examples

4-6

Control
Control Type Name Properties Purpose
TextBox edtSize Accepts input of magic square
size.
CommandButton btnCreate Caption = Create When pressed, creates a new
magic square with current size.
ListView 1stMagic GridLines = True Displays the magic square.
LabelEdit = 1vwManual
View = 1vwReport

The following figure shows the controls layout on the form you created:

&, Project1 - Microsoft ¥isual Basic [design] = =3
fie Edt Yew Froject Format Debug Run Guery Disgram Inols Addns Window Help |

|-5-dleH|2ralo o) = MEREEEX[+ 0o 2% 5565 x 5040

Project - Project
General ‘ e
L3 &, Project1 - Form (Form) i —1of x| Project1 (Project1)
M =t . ! -5 Forms
A a0 . Create Magic Squares] o [=l | [e—
[= -~ Magic Squars Dem
F & Magic Square Size:
Create
Ei=m
mm j TtMagio Properties - Form1
Form1 Form E
= -
@ I i Alphabetic |Calegunzed|
(=]) Forml =
Appearance 1-30
g - Autoredran False
[a] IBackColor [aHsooo00oF
= Borderstyle 2- Sizable:
i Create Magic 5
CipControls True
Caption
Returns/sets the text displayed in an
o g .
Form Layout x|

When the form and controls are complete, add the code below to the form.
This code references the control and variable names listed above. If you have

Magic Square Example

given different names for any of the controls or any variable, change this code
to reflect those differences.

Private Size As Double 'Holds current matrix size
Private theMagic As magicdemo.magic 'magic object instance

Private Sub Form_Load()
'This function is called when the form is loaded.
'Creates a new magic class instance.
On Error GoTo Handle Error
Set theMagic = New magicdemo.magic
Size = 0
Exit Sub
Handle_Error:
MsgBox (Err.Description)
End Sub

Private Sub btnCreate Click()
'This function is called when the Create button is pressed.
'Calls the mymagic method, and displays the magic square.
Dim y As Variant
If Size <= 0 Or theMagic Is Nothing Then Exit Sub
On Error GoTo Handle_Error
Call theMagic.mymagic(1, y, Size)
Call ShowMatrix(y)
Exit Sub
Handle_Error:
MsgBox (Err.Description)
End Sub

Private Sub edtSize Change()
'This function is called when ever the contents of the
'Text box change. Sets the current value of Size.

On Error Resume Next

Size = CDbl(edtSize.Text)

If Err <> 0 Then

Size = 0

End If

End Sub

4 Usage Examples

4-8

Private Sub ShowMatrix(y As Variant)
'This function populates the ListView with the contents of
'y. y is assumed to contain a 2D array.

Dim n As Long

Dim i As Long

Dim j As Long

Dim nLen As Long

Dim Item As ListItem

On Error GoTo Handle_Error
'Get array size
If IsArray(y) Then

n = UBound(y, 1)
Else

n =1
End If
'Set up Column headers
nLen = lstMagic.Width / 5
Call lstMagic.ListItems.Clear
Call 1lstMagic.ColumnHeaders.Clear
Call lstMagic.ColumnHeaders.Add(, , "", nLen, lvwColumnLeft)
For i =1 Ton

Call 1lstMagic.ColumnHeaders.Add(, , _

"Column " & Format(i), nLen, lvwColumnLeft)
Next
'Add array contents
If IsArray(y) Then

For i =1 Ton

Set Item = lstMagic.ListItems.Add(, , "Row " & Format(i))
For j =1 Ton
Call Item.ListSubItems.Add(, , Format(y(i, j)))

Next
Next
Else
Set Item = lstMagic.ListItems.Add(, , "Row 1")
Call Item.ListSubItems.Add(, , Format(y))
End If
Exit Sub

Handle_Error:
MsgBox (Err.Description)

Magic Square Example

End Sub

Creating the Executable
After the code is complete, create the stand-alone executable magic.exe:

1 Save the project by clicking File > Save Project from the main menu.
Accept the default name for the main form and enter magic.vbp for the
project name.

2 Return to the File menu. Click File > Make magic.exe to create the
finished product.

Testing the Application

You can run the magic.exe executable as you would any other program.
When the main dialog box starts, enter a positive number in the input box and
click the Create button. A magic square of the input size appears as shown:

. Create Magic Squares - |EI|1|

—Maagic Square Demo
Magic Square Size:
|1 0
| Colurnr 1 | Colurmn 2 | Colurmn 3 | Column 4

Fow 1 92 99 1 g
Row 2 98 a0 7 14
Row 3 4 a1 88 20
Row 4 25 a7 19 21
Row 5 86 93 28 2
Row B 17 24 7B a3
Row 7 23 5 82 29
Row 8 79 [13 95
Fow 4 10 12 94 96
Row 10 11 18 100 7

T | 1]

The ListView control automatically implements scrolling if the magic square
is larger than 4-by-4.

Packaging the Component

As a final step, package the magicdemo component and all supporting libraries
into a self-extracting executable. Then anyone can install the package onto

4-9

4 Usage Examples

4-10

another computer, in particular a computer without MATLAB installed, and
use the magicdemo application.

To package the component, follow these steps:

1 Return to the MATLAB Builder window. If necessary, type comtool in the
Command window and open the magicdemo project.

2 (Click Component > Package Component. This command creates the
magicdemo.exe self-extracting executable.

To install the component onto another computer, copy the magicdemo.exe
package and to that machine, run magicdemo.exe from a command prompt,
and follow the instructions.

Spectral Analysis Example

Spectral Analysis Example

This example shows how to create a comprehensive Excel add-in to perform
spectral analysis. It requires knowledge of Visual Basic forms and controls, as
well as Excel workbook events. See the Visual Basic documentation included
with Microsoft Excel for a complete discussion of these topics.

The example creates an Excel add-in that performs a fast Fourier transform
(FFT) on an input data set located in a designated worksheet range. The
function returns the FFT results, an array of frequency points, and the power
spectral density of the input data. It places these results into ranges you
indicate in the current worksheet. You can also optionally plot the power
spectral density. You develop the function so that you can invoke it from the
Excel Tools menu and can select input and output ranges through a graphical
user interface (GUI).

To create this add-in requires four basic steps:

1 Build a stand-alone COM component from MATLAB code.

2 Implement the necessary Visual Basic Application (VBA) code to collect
input and dispatch the calls to your component.

3 Create the GUI.

4 Create an Excel add-in and package all necessary components for
application deployment.

Building the Component

Your component will have one class with two methods, computefft and
plotfft.

® The computefft method computes the FFT and power spectral density of
the input data and computes a vector of frequency points based on the
length of the data entered and the sampling interval.

¢ The plotfft method performs the same operations as computefft, but
also plots the input data and the power spectral density in a MATLAB
figure window.

4-11

4 Usage Examples

The MATLAB code for these two methods resides in two M-files, computefft.m
and plotfft.m, as shown:

computefft.m:
function [fftdata, freq, powerspect] = computefft(data, interval)
if (isempty(data))
fftdata = [];
freq = [1;
powerspect = [];
return;
end
if (interval <= 0)
error('Sampling interval must be greater then zero');
return;
end
fftdata = fft(data);
freq = (0:length(fftdata)-1)/(length(fftdata)*interval);
powerspect = abs(fftdata)/(sqrt(length(fftdata)));

plotfft.m:

function [fftdata, freq, powerspect] = plotfft(data, interval)
[fftdata, freq, powerspect] = computefft(data, interval);
len = length(fftdata);
if (len <= 0)
return;
end
t = O:interval:(len-1)*interval;
subplot(2,1,1), plot(t, data)
xlabel('Time'), grid on
title('Time domain signal')
subplot(2,1,2), plot(freq(1:1len/2), powerspect(1:1len/2))
xlabel('Frequency (Hz)'), grid on
title('Power spectral density')

To build the component, follow these steps:

1 Start comtool.

4-12

Spectral Analysis Example

2 Create a new project with these settings:
¢ Component name: Fourier
¢ Class name: Fourier

* Project version: 1.0

See “Project Settings Window” on page 2-6 for a description of new project
settings.

3 Add the computefft.mand plotfft.m M-files to the project.
4 Save the project.

5 Click Build > COM Object to create the component.

Integrating the Component with VBA

The next step is to implement the necessary VBA code to integrate the
component into Excel.

Follow these steps to open Excel and select the libraries you need to develop
the add-in:

1 Start Excel.
2 From the Excel main menu, click Tools > Macro > Visual Basic Editor.

3 When the Visual Basic Editor starts, click Tools > Referencesto display
the Project References dialog.

4 Select Fourier 1.0 Type Library and MWComUtil 7.1 Type Library .

Creating the Main VBA Code Module

The add-in requires some initialization code and some global variables to
hold the application’s state between function invocations. To achieve this,
implement a Visual Basic code module to manage these tasks, as follows:

1 Right-click VBAProject in the project window and click Insert > Module.

4-13

4 Usage Examples

4-14

2 A new module appears under Modules in the VBA Project. In the

module’s property page, set the Name property to FourierMain, as shown:

i Microsoft Visual Basic - Fourier.xls - [FourierMain (Code)]

|+ Ble Edit Yiew Insert Format Debug Bun Ieols Adddns window Help

P T=)
=Bl x|

Ea-B s =esnoc]), ai|8Ey 2|0 .

Project - ¥BAProject

DE=

=-%} vBAProject (Fourier.xls)
-3 Microsoft Excel Objects

4] Thisworkbook
(7 Forms
-3 Madules

it G

Properties - FourierMain

[FourierMain Module

L] e

Alphabstic | categorized |

U Fourierfain

I(General) j I(I]eclﬂratinns)

! FourierMain - Main wodule stores global state of controls
' and provides initialization code

'Glopal instance of Fourier ohiect
Public theFourier Ls Fourier.Fourier
'Global instance of MWComplex to accept FFT of input range
Public theFFTData Ls MWComplex
'Input data range

Public InputData As Range

'Sampling interval

Public Interval As Double

'ourpur. frequency data range

Public Frequency As Range

'Outpur power spectral density ranges
Public FowerSpect Ls Range

'Holds the state of plot flag

Public bPlot As Boolean

'Global instance of HWUGil ohisct
Public theUcil As MWUGil
'Module-is-initialized flag

Public hInitialized As Boolean

Private Sub LoadFourier()
'Initislizes globals and Loads the Spectral Analysis form

ocgte___————————— s
[<ready>

Expression [value [Type

L«

3 Enter the following code in the FourierMain module:

and provides initialization code

'Global instance of Fourier object
Public theFourier As Fourier.Fourier

'Global instance of MWComplex to accept FFT

Public theFFTData As MWComplex
"Input data range

Public InputData As Range
'Sampling interval

Public Interval As Double
'"Output frequency data range

FourierMain - Main module stores global state of controls

Spectral Analysis Example

Public Frequency As Range
"Output power spectral density range
Public PowerSpect As Range
'Holds the state of plot flag
Public bPlot As Boolean
'Global instance of MWUtil object
Public theUtil as MWUtil object
'Module-is-initialized flag
Public bInitialized As Boolean
Private Sub LoadFourier()
'Initializes globals and Loads the Spectral Analysis form
Dim MainForm As frmFourier
On Error GoTo Handle_Error
Call InitApp
Set MainForm = New frmFourier
Call MainForm.Show
Exit Sub
Handle_Error:
MsgBox (Err.Description)
End Sub

Private Sub InitApp()
'Initializes classes and libraries. Executes once
'for a given session of Excel
If bInitialized Then Exit Sub
On Error GoTo Handle_Error
If theFourier Is Nothing Then
Set theFourier = New Fourier.Fourier
End If
If theFFTData Is Nothing Then
Set theFFTData = New MWComplex
End If
bInitialized = True
Exit Sub
Handle_Error:
MsgBox (Err.Description)
End Sub

4-15

4 Usage Examples

4-16

Creating the Visual Basic Form

The next step is to develop a user interface for your add-in using the Visual
Basic editor. Follow these steps to create a new user form and populate it
with the necessary controls:

1 Right-click VBAProject item in the project window and click
Insert > UserForm.

A new form appears under Forms in the VBA Project.

2 In the form’s property page, set the name property to frmFourier and the
Caption property to Spectral Analysis, as shown:

i Microsaft Visual Basic - Fourier.xls - [Fourier.xls - frmFourier (UserForm)] I I []
| Ble Edt Yiew Dnsert Format Debug Run Ieols Addlns Window Help [5||

CHp s, o ek NEER B

j i
i =
& | ‘ =
— InpLt Dat
%% vBAProject (Bookl) ln”;uut D:t: Corirols |
B2 5 VBAProject (Fourier.xls) | : J x A abl
Wicrosoft Excel Objects N
F & 202
Sampling Interval: l— e w oa
=z s
&) Thistworkbaok I Plat time domain signal and power spectral density (-8
23 Forms
frmFourier — Output Data
=25 Madules Frequency:
w2 FourierMain I J
Properties - frmFour H| FFT - Real Part:
[frmFourier UserForm B | |
Alphabetic |Cateanizad | FFT - Imaginary Part:
frmFourier = | |
BackColor [aHaoooo0oFe:
BorderColor M =Ha00000128: Power Spectral Density:
BorderStyle 0 - fmBorderstyleone | J
(Caption Spectral Analysis
Cycle 0 - fmCycleallForms
DrawBuffer 32000 Cancel [
Enabled True
Font Tahoma
ForeColor W &HB000001 26
Height 318,75
HelpContextiD 0
espSrrolfarsiistio 3 msormiBarsioth
o
Mouseleon (hlons) [<Ready> [=]]
MousePointer 0 - frMousePointerDefaLt Expression [value [Type -
Ficture: (Mons) |
PictureAlignment |2 - FPictureAlignment Center
PictureSizsMode |0 - FPicturesSizeMadeClip
PictureTiing False
RightToL sft False
ScrollBars 0 - fmScralBarshione
ScrollHsight 0
Scrollsft 0
ScrolTop 0 x| =

3 Add a series of controls to the blank form to complete the dialog, as
summarized in the following table.

Spectral Analysis Example

Control Type

Control Name

Properties

Purpose

Frame Frame1 Caption = Input Groups all input controls.
Data
Label Labeld Caption = Input Labels the RefEdit for
Data: input data.
RefEdit refedtInput Selects range for input
data.
Label Label?2 Caption = Labels the text box for
Sampling sampling interval.
Interval
TextBox edtSample Specifies the sampling
interval.
CheckBox chkPlot Caption = Plot Plots input data and
time domain power spectral density.
Signal and
Power Spectral
Density
Frame Frame2 Caption = Output | Groups all output
Data controls.
Label Label3 Caption = Labels the RefEdit for
Frequency: frequency output.
RefEdit refedtFreq Selects output range for
frequency points.
Label Label4d Caption = FFT - Labels the RefEdit for
Real Part: real part of FF'T.
RefEdit refedtReal Selects output range for
real part of FFT of input
data.
Label Label5 Caption = FFT - Labels the RefEdit for
Imaginary Part: |imaginary part of FFT.
RefEdit refedtImag Selects output range for

imaginary part of FFT of
input data.

4-17

4 Usage Examples

Control Type Control Name Properties Purpose
Label Label6 Caption = Labels the RefEdit for
Power Spectral power spectral density.
Density
RefEdit refedtPowSpect Selects output range for
power spectral density of
input data.
CommandButton [btnOK Caption = OK Executes the function and
Default = True dismisses the dialog
CommandButton | btnCancel Caption = Cancel | Dismisses the dialog box
without executing the
Cancel = True .
function.

4-18

The following figure shows the resulting layout.

Spectral Analysis x|

— Input Data
Input Daka:

1

Sampling Interval:

™ Plot time domain signal and power spectral density

— Qutput Data
Frequency:

FFT - Real Part:

FFT - Imaginary Park:

Power Spectral Density:

When the form and controls are complete, right-click anywhere in the
form and click View Code. The following code listing shows the code to
implement. Note that this code references the control and variable names

Spectral Analysis Example

listed above. If you have given different names for any of the controls or
any global variable, change this code to reflect those differences.

'frmFourier Event handlers
Private Sub UserForm_Activate()
'UserForm Activate event handler. This function gets called before
'showing the form, and initializes all controls with values stored
'in global variables.
On Error GoTo Handle_Error
If theFourier Is Nothing Or theFFTData Is Nothing Then Exit Sub
'Initialize controls with current state
If Not InputData Is Nothing Then
refedtInput.Text = InputData.Address
End If
edtSample.Text = Format(Interval)
If Not Frequency Is Nothing Then
refedtFreq.Text = Frequency.Address
End If
If Not IsEmpty (theFFTData.Real) Then
If IsObject(theFFTData.Real) And TypeOf theFFTData.Real Is Range Then
refedtReal.Text = theFFTData.Real.Address
End If
End If
If Not IsEmpty (theFFTData.Imag) Then
If IsObject(theFFTData.Imag) And TypeOf theFFTData.Imag Is Range Then
refedtImag.Text = theFFTData.Imag.Address
End If
End If
If Not PowerSpect Is Nothing Then
refedtPowSpect.Text = PowerSpect.Address
End If
chkPlot.Value = bPlot
Exit Sub
Handle_Error:
MsgBox (Err.Description)
End Sub

Private Sub btnCancel_Click()

4-19

4 Usage Examples

‘Cancel button click event handler. Exits form without computing fft
'or updating variables.
Unload Me
End Sub
Private Sub btnOK_Click()
'0OK button click event handler. Updates state of all variables from controls
'and executes the computefft or plotfft method.
Dim R As Range

If theFourier Is Nothing Or theFFTData Is Nothing Then GoTo Exit_Form

On Error Resume Next

'Process inputs

Set R = Range(refedtInput.Text)

If Err <> 0 Then
MsgBox ("Invalid range entered for Input Data")
Exit Sub

End If

Set InputData = R

Interval = CDbl(edtSample.Text)

If Err <> 0 Or Interval <= 0 Then
MsgBox ("Sampling interval must be greater than zero")
Exit Sub

End If

'Process Outputs

Set R = Range(refedtFreq.Text)

If Err = 0 Then
Set Frequency = R

End If

Set R = Range(refedtReal.Text)

If Err = 0 Then
theFFTData.Real = R

End If

Set R = Range(refedtImag.Text)

If Err = 0 Then
theFFTData.Imag = R

End If

Set R = Range(refedtPowSpect.Text)

If Err = 0 Then
Set PowerSpect = R

End If

4-20

Spectral Analysis Example

bPlot = chkPlot.Value
'Compute the fft and optionally plot power spectral density
If bPlot Then
Call theFourier.plotfft(3, theFFTData, Frequency, PowerSpect,_
InputData, Interval)
Else
Call theFourier.computefft(3, theFFTData, Frequency, PowerSpect,_
InputData, Interval)
End If
GoTo Exit_Form
Handle_Error:
MsgBox (Err.Description)
Exit_Form:
Unload Me
End Sub

Adding The Spectral Analysis Menu Item to Excel

The last step in the integration process is to add a menu item to Excel so that
you can invoke the tool from Excel’s Tools menu. To do this you add event
handlers for the workbook’s AddinInstall and AddinUninstall events; these
are events that install and uninstall menu items. The menu item calls the
LoadFourier function in the FourierMain module.

Follow these steps to implement the menu item:

1 Right-click ThisWorkbook in the Visual Basic project window and click
View Code.

4-21

4 Usage Examples

|+ Ble Edt Yiew Insert Format Debug Run Ieols Addlns Window Help

P T=)
=181

I

oE s

B-H s mEalo o],) ek HEE 2 B0 .

| [worknook x| [nadininstan

55 vBAProject (Book1)
=%} vBAProject (Fourier.xls)
=153 Microsoft Excel Objects
Sheet! (Sheet1)
Sheet? (Sheetz)
Sheet3 (Sheet3)
4] ThisWorkbaok
23 Forms
FrmFourier

£ Modules
w2 FourierMain

Private Sub Workbook AddinInstall ()
'Called vhen hddin i3 installed
Call hddFourierMenultem
End Sub
Private Sub Workbook AddinUninstall ()
'Called vhen hddin i3 uninstalled
Call RemoveFourierMenultem
End Sub
Private Sub hddFourierMenultem(
Dim ToolsMenu ks CormandBarPopup
Dim NevMenultem As CommandBarButton

pr

'Remove if already exists
Call RemoveFourierMenultem

| Thiswarkbook Workbook
Alphabetic |Categunzed |

|AcceptLabelsinFormlas False
lAutoUpdateFrequency |0
(ChangetistoryDuration |0
ConflictResolution

Dats1304 False
DisplayDrawingObjects

Envelopsvisible False
HasRoLtingSip False
Highlight ChangesonSereen False
L= Addin False
KeepChangeHistory True

ListChangesOnhewsheet False
PersonalviewlistSettings | True
PersonalviewPrintSettings | True

PrecisionAsDisplayed False
saved True
saveLinkValues True
showConflictHistory False

TemplateRemoveExtData False
UpdateRemoteReferences | True

nﬂ_ ThisWorkbook.

1 - lUserResolution

-4104 - xIDisplayShapes

E1|
=l 'Find Tools menu
Set ToolsMenu = kpplication.CommandBars(1).FindControl (ID:=30007)
If ToolsMenu Is Hothing Then Exit Sub
'had Spectral Analysis menu item
Set NevMenultem = ToolsMenu.Controls.hdd[Type:=msoControlBucton)
NewMenultem.Caption = "Spectral Analysis..."
NewMenultem.Onketion = "LoadFourier"
End Sub
Private Sub RemoveFourierMenulter()
Dim CrdBar As CommandBar
Dim Cerl As CommandBarControl
On Error Resume Next
'Find tools menu and remove Spectral hnalysis menu item

P o

Locals

[<Ready> _I

Expression [value [Tepe

L«

2 Add the following code to the ThisWorkbook object.

4-22

Private Sub Workbook_AddinInstall()

'Called when Addin is installed
Call AddFourierMenuItem

End Sub

Private Sub Workbook_AddinUninstall()

'Called when Addin is uninstalled
Call RemoveFourierMenuItem

End Sub

Private Sub AddFourierMenuItem()
Dim ToolsMenu As CommandBarPopup
Dim NewMenuItem As CommandBarButton

Spectral Analysis Example

'Remove if already exists

Call RemoveFourierMenuItem

'Find Tools menu

Set ToolsMenu = Application.CommandBars(1).FindControl(ID:=30007)
If ToolsMenu Is Nothing Then Exit Sub

'Add Spectral Analysis menu item

Set NewMenuItem = ToolsMenu.Controls.Add(Type:=msoControlButton)

NewMenuItem.Caption = "Spectral Analysis..."
NewMenuItem.OnAction = "LoadFourier"
End Sub

Private Sub RemoveFourierMenuItem()

Dim CmdBar As CommandBar

Dim Ctrl As CommandBarControl

On Error Resume Next

'Find tools menu and remove Spectral Analysis menu item
Set CmdBar = Application.CommandBars(1)

Set Ctrl = CmdBar.FindControl(ID:=30007)

Call Ctrl.Controls("Spectral Analysis...").Delete

End Sub

Saving the Add-in

Name the add-in Spectral Analysis and follow these steps to save it:
1 From the main menu in Excel, click File > Properties.
The Workbook Properties dialog box appears.

2 Click the Summary tab and enter Spectral Analysis as the workbook
title.

3 Click OK to save the edits.
4 Click File > Save As from the Excel main menu.
5 Click Microsoft Excel Add-In (*.xla) as the file type.

6 Enter Fourier.xla as the filename.

4-23

4 Usage Examples

4-24

7 Click Save to save the add-in.

Testing The Add-in

Before distributing the add-in, test it with a sample problem. Spectral
analysis is commonly used to find the frequency components of a signal
buried in a noisy time domain signal. In this example you will create a data
representation of a signal containing two distinct components and add to it a
random component. This data along with the output will be stored in columns
of an Excel worksheet, and you will plot the time-domain signal along with
the power spectral density.

Follow the steps outlined below to create the test problem:

1 Start a new session of Excel with a blank workbook.

2 Click Tools > Add-Ins from the main menu.

3 When the Add-Ins dialog box comes up, click Browse.
4 Browse to the Fourier.xla file and click OK.

5 The Spectral Analysis add-in appears in the available Add-Ins list and
is selected.

6 Click OK to load the add-in.

This add-in installs a menu item under the Excel Tools menu. You can
display the Spectral Analysis GUI by clicking Tools > Spectral Analysis.

Before invoking the add-in, create some data, in this case a signal with
components at 15 and 40 Hz. Sample the signal for 10 seconds at a sampling
rate of 0.01 second. Put the time points into column A and the signal points
into column B.

Creating the Data
Follow these steps to create the data:

1 Enter 0 for cell Al in the current worksheet.

2 Click on cell A2 and type the formula = A1 + 0.01.

Spectral Analysis Example

Drag the formula in cell A2 down the column to cell A1001.

This procedure fills the range A1:A1001 with the interval 0 to 10
incremented by 0.01.

Click on cell B1 and type the formula SIN(2*PI()*15*A1) +
SIN(2*PI()*40*A1) + RAND().

Repeat the drag procedure to copy this formula to all cells in the range
B1:B1001.

Running the Test
Using the column of data (column B), test the add-in as follows:

2

Click Tools > Spectral Analysis from the main menu.
Click Input Data.

Click the B1:B1001 range from the worksheet, or type this address into
Input Data.

Click Sampling Interval box and type 0.01.
Click Plot time domain signal and power spectral density.

Enter C1:C1001 for frequency output. Similarly, enter D1:D1001, E1:E1001,
and F1:F1001 for the FFT real and imaginary parts, and spectral density.

Click OK to run the analysis.

The following figure shows the output.

4-25

4 Usage Examples

4-26

B3 Microsoft Excel - Book1
&) Fie Edt vew Insert Fomat Toos Dots Window telp

DEEa8RY |4 BRI~ (@ = £ 43 @ o -5 [B
Q3 j =‘

[B T'¢c [b TE [F e [A [T [J TR [L M NTOTH
[1 0 0201422 0 5005243 0 1582797
|2 0.01 2.364546 0.1 8.44324 1.112117 0.269305,
3 0.02 0424141 02 -0.28779 2589662 0.08239
|4 0.03 1.956734. 0.3 8773018 2110443 0.285342
|51 0.04 -1.06567 04 -10035 -249211 0.326975
| B 0.05 -0.50068 05 -159236 -269405 0.098962
|7 0.06 0.992995° 06 442359 9082895 0.319479
R 0.07 -0.2288 07 -13.0441 -0.19807 0.412538,
|9 0.08 2495782 0.8 -7.36004 2259597 0.243467
{100 0.03 0.853563 09 -657995 -123651 0.442935
11 0.1 033184 1 3.447282 4201153 0.171853.
{12 0.1 -0.00625° 1.1 -10.3228 -5.27412 0.366574
[13 012 -1.36424. 1.2 9284435 4187427 0.32208
|14 0.13 1.259695 13 -11.5624 6.969041 0.426915
|15 0.14 0.204847 14 5.8311 -1.10339 0.187668
|16 0.15 1.010208 15 3255038 -3.99248 0.162896
[17] 0.16 1.640045' 16 1436592 1166599 0.371698
|18 017 -0.44132. 17 -300437 -3.39444 0.143347
|19 0.18° 0.211505. 18 289931 571643 0.202693
|20 019 -0.99357 1.9 1121279 8400998 0.268019
{21 0.2 0.379924 2 -2.80552 -6.592 0.226551
|22 021 183771 21 -845165 -15761 0.271872
|23 0.22 0.368155. 22 -337307 -10.252 0.341293
[z 0.23 2.117552. 23 524299 -6597011 0.27581
|25 0.24 -0B6651 24 0925776 -5.9012 0.188895,
|26 025 -0.33152 25 3100077 4991781 0.185818,
|27 0.26 0.394927 26 -3.16232 0.028866 0.100006
|28 0.27 0.143179. 27 9481148 -3.10764 0.315515,
|29 0.28 2.740805' 2.8 5448927 -152843 0.178961
|30 0.23 0.230976° 29 195382 -11.3264 0.363461
[31 0.3 0.913667 3 -132565 -3.82213 0.12793
|32 0.31 0.117747 3.1 1.148378 -9.15371 0.291735,
|33 032 -157611 32 1154045 -522124 0.400554.
|34 0.33 1.577908 33 -3.13453 1.159207 0.105684.
|35 0.34 0.373403 3.4 1005112 0.107201 0.031965,
|36 0.35 1.405944 35 069275 0803781 0.033555,
|37 0.36 2.163784. 36 -029716 -13.7448 0.434751
|38 037 -0.79952 37 -404466 -5.47217 0.215183,
038 0.31803. 38 -5.84649 0.003747 0.184882
[0 0% oeess 39 24379 Ber7ED 0230761
|41 0.4 0597445 4 1717283 1.174817 0.085797
|42 0.41 2119417 4.1 1218546 -14.3198 0.454469
| 43 042 001473 42 052696 17.72755 0.560842
| 44 0.43 2131939 43 -270571 0.383641 0.086418,
| 45 0.44 037325 4.4 1248446 10.43034 0.332209

| 46 0.45 -0.17902 45 -442196 -16.158 0.529749 =

[T > v sheets Shestz / sheets // 14l -jJJ

Readly [T o o o {17

The power spectral density reveals the two signals at 15 and 40 Hz.

Package the Component

As a final step, package the COM component and all supporting libraries
into a self-extracting executable. The package can then be installed on other
computers that need to use the Spectral Analysis component. You will also
need to copy the Fourier.xla file to any machine that will use this component
from inside Excel.

To package the component, follow these steps:

1 Return to the MATLAB Builder window. If necessary, issue the comtool
command and reload the Fourier project.

2 Click Component > Package Component.

This command creates the Fourier.exe self-extracting executable. To install
this component on another computer, copy the Fourier.exe package to that
machine, run it from a command prompt, and follow the instructions.

Univariate Inferpolation

Univariate Interpolation

This example is created using the Akima’s Univariate Interpolation example
posted by N. Shyamsundar on the MathWorks Web site. You can download
the original M-file from http://www.mathworks.com/matlabcentral/.

This example shows you how to create the COM component using MATLAB
Builder for COM and how to use this COM component in external Microsoft
Visual Basic Code independent of MATLAB. It assumes that you have
downloaded the M-file to the matlab/work directory.

Building the Component

Build the component as follows:

1 From the MATLAB command prompt change directories to matlab/work.
2 Enter the command comtool.
3 In the MATLAB Builder window, click File > New Project.

This opens the New Project Settings dialog box.

Enter the following settings:

¢ In the Component name field enter the component name
UnivariateInterp. Press the Tab key to move to the Class name field.

e Enter the Class name Interp.

® (Click Add. This adds the class name Interp to the list of classes in the
Classes field.

® The version has a default of 1.0. Leave this number unchanged.

® The Project directory field contains a default of a combination of
the directory where MATLAB Builder for COM was started and the
Component name, Univariateinterp. You can change this to any
directory that you choose. If the directory you choose does not exist, you
will be asked to create it.

® Leave all compiler options unselected.

4-27

http://www.mathworks.com/matlabcentral/

4 Usage Examples

The New Project Settings dialog box now looks as shown below

«): New Project Settings 10l =|
rProject naming

Component name

Linivaristeinterp
Classes

Interp
Univariateinte

Class name
Remuove d_1

Froject version

1.0

Froject directary

|D:1m atlabwrorkiUnivariateinterp

Erowse... |

rCompiler aption

[Creste s singleton MCR
™ Build debug version

[Show verbose output

QK | Cancel | Help |

Project Settings for Univariate Interpolation Project

® (Click OK to create the Univariateinterp project.

Summary of Project Settings
Component name: Univariateinterp

Class name: Univariateinterp

Project version: 1.0

Project directory: (accept default or choose another directory)
Compiler options: (leave unselected)

Building the Project

Follow these steps to create the component.

4-28

Univariate Interpolation

1 In the MATLAB Builder window, click Add File.

2 Add UnivariateInterpolation.m from the matlab\work/Interp directory

< MATLAB Builder - univariateinterp.cbl - ;Iglll

File Project Build Component Help

Project Files rBuild Statu

Add File I

"] Project Files
B0 Interp

EEJ

l-» DiWorkinterpWnivariatelnterpolation.m
& MEX-files

Edit] Remaove l Clear

3 Click COM Object > Build to create the component.

The component is created and placed in the distrib directory within the
Class directory.

4-29

4 Usage Examples

«): MATLAB COM Builder - UnivariateInterp.chbl = IEI Iil
File Project Build Component Help
rProject File Build Status:

Add File | Building standalone exec, =]

= = = mee -d ‘ToMATLABEpS o
:J P\roject Files Setting MEVCDIr for use w
=3 "Tte . Univariatelntern_idLidl
-4 DWMATLABGpSworkinterpilnivariatelnterpalation.
MEX-files

rmweomtypes.idl

Creating distrib directory.
Moving files to distrib.

{ml3 Al Ml boild i
4 | » | »

Edit | Remave | Clear |

MATLAB Builder for COM GUI After Compilation

Using the Component in Visual Basic
You can call the component from any application that supports COM.

Follow these steps to create a Visual Basic project and add references to the
necessary libraries.

1 Start Visual Basic.

2 Create a new Standard EXE project. The design form appears as shown:

4-30

Univariate Interpolation

Note You might have different components on the left side of the window
depending upon the components you have selected for viewing.

Click Project > References.
Check the following libraries:
UnivariateInterp 1.0 Type Library

MWComUtil 7.1 Type Library

4-31

4 Usage Examples

Note If you do not see these libraries, you may not have registered the
libraries using mwregsvr. Refer to “Component Registration” on page 6-4
for information on this process.

Creating the Visual Basic Form

The next step creates a front end or a Visual Basic form for the application.
You receive data from the user through this form.

Follow these steps to create a new user form and populate it with the
necessary controls.

1 Click Projects > Component. Alternatively, press Ctrl+T.
Check that Microsoft Windows Common Controls 6.0 is selected.
You will use the ListView control from this component library.

2 Add a series of controls to the blank form to create an interface as shown in
the next figure.

Wi, Univariate Interpolation ;IQI!I

© Mumber of Data Poirts - -

. Number of Interpolation Points - - - I .

ST wiould pou like to plat the data? @000l

o |lst<Data lstvD ata lstinterp

Evaluate | . Cancel | .

The following table summarizes the list of components added and the
properties modified.

4-32

Univariate Inferpolation

Control Type

Control Name

Properties

Purpose

Form frmInterp Caption = Univariate Container for all
Interpolation components.

Label 1lblDataCount Caption = Number of Data Labels the text box
Points txtNumDataPts.

TextBox txtNumDataPts Text = Number of original data
points.

Label lblInterp Caption = Number of Labels the text box

Interpolation Points txtInterp.

TextBox txtInterp Text = Number of points over
which to interpolate.

Label 1blPlot Caption =Would you like to | Labels the check box

plot the data? chkPlot.

CheckBox chkPlot When selected, a message
is sent to the COM
component to plot the
data.

ListView 1stXData Name = 1stXData X-data values. Set the

T _ view type to lvwReport
CrulelLitngs = v to allow the user to add
LabelEdit = 1vwAutomatic data to the list view.
View = 1vwReport
ListView 1stYData Name = 1stYData Y-data values. Set the
T _ view type to lvwReport
CrulelLitngs = v to allow the user to add
LabelEdit = 1vwAutomatic data to the list view.
View = 1vwReport
ListView lstInterp Name = 1stInterp Interpolation points.

GridLines = True
LabelEdit = 1vwAutomatic

View = 1vwReport

4-33

4 Usage Examples

Control Type | Control Name

Properties

Purpose

CommandButton| cmdEvaluate

Caption = Evaluate

Default = True

Executes the function.

CommandButton| cmdCancel

Caption = Cancel

Cancel = True

Dismisses dialog box
without executing
function.

3 When the design is complete, save the project by clicking File > Save.

4 When prompted for the project name, type Interp.vbp, and for the form,
type frmInterp.frm.

5 To write the underlying code, right-click frmInterp in the Project window
and click View Code.

The following code listing shows the code to implement. Note that this
code references the control and variable names listed above. If you have
given a different name to any of the controls or any global variable, change
this code to reflect the differences.

Private theInterp As UnivariateInterp.Interp 'Variable to hold the COM object

Private Sub cmdCancel_Click()

' Unload the form if the user hits the cancel button.

Unload Me

End Sub

Private Sub Form_Initialize()

On Error GoTo Handle_Error

' Create the COM object

4-34

' If there is an error, handle it accordingly.

Set theInterp = New UnivariatelInterp.Interp

' Set the flags such that the input is always passed as double data.
theInterp.MWFlags.DataConversionFlags.CoerceNumericToType = mwTypeDouble
Exit Sub

Handle_Error:

' Error handling code

MsgBox ("Error " & Err.Description)

Univariate Inferpolation

End Sub

Private Sub Form_Load()
' Set the run time properties of the components
Dim Len1 As Long ' Variable to hold length parameter of the list box
Dim Len2 As Long ' Variable to hold the length parameter of the list box
Len2 = lstInterp.Width / 2
Lent = (lstInterp.Width - Len2) - 150
' Add the column headers to the list boxes
Call 1lstXData.ColumnHeaders.Add(, , "XData", Len2)
Call 1lstYData.ColumnHeaders.Add(, , "YData", Len2)
Call 1lstInterp.ColumnHeaders.Add(, , "Interp Data", Len1)
Call 1lstInterp.ColumnHeaders.Add(, , "Interp YData", Len2)

' Enable the grid lines

lstXData.GridLines = True
lstYData.GridLines = True
lstInterp.GridLines = True

1stInterp.FullRowSelect = True

' Set the Tab indices for each of the components
txtNumDataPts.TabIndex = 1
txtInterp.TabIndex = 2

1stXData.TabIndex

lstYData.TabIndex = 4

1stInterp.TabIndex = 5

cmdEvaluate.TabIndex = 6

cmdCancel.TabIndex = 7
End Sub

Private Sub txtInterp_Change()
' If user changes number of interpolation points, set the interpolation
' point listbox to accomodate the new number of points.
Dim loopCount As Integer ' loop count
Dim numData As Integer
On Error GoTo Handle_Error
' First clear the listbox
Call 1lstInterp.ListItems.Clear
' Create space for the requested number of interpolation points

If Not (txtInterp.Text = "") Then

4-35

4 Usage Examples

numData = CDbl(txtInterp.Text)
For loopCount = 1 To numData
Call 1stInterp.ListItems.Add(loopCount, , "")
Next
End If
Exit Sub
Handle_Error:
' Reset the list to O elements and also the text box to an empty string.
MsgBox ("Invalid value for number of Data points")
1stInterp.ListItems.Clear
txtInterp.Text = ""
End Sub

Private Sub txtNumDataPts_Change()
' If the user changes the number of data points, set the XData and YData
' listboxes to accomodate the new number of points.
Dim loopCount As Integer ' loop count
Dim numData As Integer
On Error GoTo Handle_Error
' First clear both the listbox (XData and YData)
Call lstXData.ListItems.Clear
Call lstYData.ListItems.Clear
' Create space for the requested number of data points (XData and YData).
If Not (txtNumDataPts.Text = "") Then
numData = CDbl(txtNumDataPts.Text)
For loopCount = 1 To numData
Call 1lstXData.ListItems.Add(loopCount, , "")
Call 1stYData.ListItems.Add(loopCount, , "")
Next
End If
Exit Sub
Handle_Error:
' Reset the list to O elements and also the text box to an empty string.
MsgBox ("Error: " & Err.des)
Call lstXData.ListItems.Clear
Call lstYData.ListItems.Clear
txtNumDataPts.Text = ""
End Sub

Private Sub cmdEvaluate_Click()

4-36

Univariate Inferpolation

' Dim R As Range

Dim XDatalInterp As Variant ' Result variable object

Dim loopCount As Integer ' A variable used for loop count

Dim item As ListItem ' Temporary variable to store data in list box

Dim XData() As Double ' X value of data points, passed to COM object

Dim YData() As Double ' Y value of data points, passed to the COM object

Dim XInterp() As Double ' X value of interpolation points, passed to COM
' object

Dim Yi As Variant ' Y value of interpolation points, obtained from COM

' object as ouput value

' Set dimensions of the input and ouput data based on user inputs (number
' of data points and number of interpolation points).

ReDim XData(1 To lstXData.ListItems.Count)

ReDim YData(1 To lstYData.ListItems.Count)

ReDim XInterp(1 To lstInterp.ListItems.Count)

ReDim Yi(1 To lstInterp.ListItems.Count)

' Collect the Data and set the XData, YData, XInterp matrices accordingly
For loopCount = 1 To lstXData.ListItems.Count
XData(loopCount) = CDbl(lstXData.ListItems.item(loopCount))
YData(loopCount) = CDbl(lstYData.ListItems.item(loopCount))
Next
For loopCount = 1 To lstInterp.ListItems.Count
XInterp(loopCount) = CDbl(lstInterp.ListItems.item(loopCount))
Yi(loopCount) = -1
Next

' Check if the object was created properly.

' If not, go to the error handling routine.

If theInterp Is Nothing Then GoTo Exit_Form

' If there is an error, continue with the code.

On Error GoTo Handle_Error

'Compute Curve Fitting Data
Call theInterp.UnivariateInterpolation(1,Yi,XData,YData,XInterp,_
chkPlot.Value)

4-37

4 Usage Examples

'Call 1lstInterp.ListItems.Clear
For loopCount = LBound(Yi, 2) To UBound(Yi, 2)
Set item = lstInterp.ListItems(loopCount)
Call item.ListSubItems.Add(, , Format(Yi(1, loopCount), "##.###"))
Next
Call lstInterp.Refresh
GoTo Exit_Form
Handle_Error:
' Error handling routine
MsgBox ("Error: " & Err.Description)
Exit_Form:
End Sub

4-38

Matrix Calculator

Matrix Calculator

This example shows how to encapsulate MATLAB utilities that perform
basic matrix arithmetic. It includes M-code that performs matrix addition,
subtraction, multiplication, division and lef t division and a function to
evaluate the eigenvalues for a matrix. The example shows how to create the
COM component using MATLAB Builder for COM and how to use the COM
component in a Visual Basic application independent of MATLAB.

Note This example assumes that you have downloaded the M-code from
http://www.mathworks.com/matlabcentral/ to the matlab/work directory.
To get the download, search the File Exchange at matlabcentral for
MatrixArith.

Building the Component
To build the component:

1 From the MATLAB command prompt change directories to
matlab/work/MatrixArith.

2 Enter the command comtool to open the MATLAB Builder window.
3 Click File > New Project.

The New Project Settings dialog box“Project Settings Window” on page
2-6 opens.

4 Enter the following settings:
a In the Component name field enter the component name matrixMath.

b Press the Tab key to move to the Class name field. This automatically
fills in the Classes field with the name matrixMathclass. You can use
this value if you want or change it.

¢ The version has a default of 1.0. Leave this number unchanged.

d The Project directory field contains a default of a combination of the
directory where COM Builder was started, <matlab>\work , and the
Component name, matrixMath. You can change this to any directory

4-39

http://www.mathworks.com/matlabcentral/

4 Usage Examples

that you choose. If the directory you choose does not exist, you will be
asked to create it.

e Leave all compiler options unselected.

The New Project Settings dialog box now appears as shown below.

«): New Project Settings 10l =|
rProject naming

Component name

matrixhdath
Classes

Class name matrixMathcla

I Add ==
Remuove | | x|

Froject version

1.0

Froject directary

|D:1m atlabbworklimatrixhath

Erowse... |

rCompiler aption
i

™ Build debug version

[Show verbose output

QK | Cancel | Help |

5 Click OK to create the matrixMath project.

Summary of Project Settings
Component name: matrixMath

Class name: matrixMath
Project version: 1.0
Project directory: (accept default or choose another directory)

Compiler options: (leave all unselected)

4-40

Matrix Calculator

Building the Project
In the MATLAB Builder window click Add File.

1 Add the following files one at a time:
® addMatrices.m
® divideMatrices.m
® eigenValue.m
® leftDivideMatrices.m
® multiplyMatrices.m

® subtractMatrices.m
from the directory matlab/work/matrixMath.
2 Click COM Object > Build to create the component.

Using the Component in Visual Basic

You can call the component from any application that supports COM. Follow
these steps to create a Visual Basic project and add references to the necessary
libraries.

1 Start Visual Basic.

2 Create a new Standard EXE project. This displays the design form shown
below.

4-41

4 Usage Examples

WM&M&-MWMWWM A r e &] 2
oo WER CcRAK L e RESEREAD L o o emenm |

[
=
A
&
foaf
=
=
=
=
an
u
il
o
(=
®
L]
~
=
A
L]

Note You might have different components on the left side of the window
depending upon the components you have selected for viewing.

3 Click Project > References.
4 Check the following libraries:

MatrixMath 1.0 Type Library

MWComUtil 7.1 Type Library

Note If you do not see these libraries, you may not have registered the
libraries using mwregsvr. Refer to “Component Registration” on page 6-4
for information on this.

4-42

Matrix Calculator

Creating the Visual Basic Form

The next step creates a front end or a Visual Basic form for the application.
End users enter data in this form.

Follow these steps to create a new user form and populate it with the
necessary controls:

1 Click Projects > Component. Alternatively, press Ctrl+T.

2 Make sure that Microsoft Windows Common Controls 6.0 are selected.
You will use the Spreadsheet control from this component library.

3 Add a series of controls to the blank form to create an interface as shown in
the next figure.

. Matrix Laboratory ;Iglil

.~ Input Matrice

=l

X . o
=

B |
1| | 3 .

- Dutput Matri .
L |

S Add ¢ Sublract

C ¢ Divide D¢ Left Divide

Evaluate | . Cancel

4-43

4 Usage Examples

4-44

4 One of the main components used in the Visual Basic form is a Spreadsheet
component. For each Spreadsheet component, set properties as follows:

Property Original Value New Value
DisplayColumnHeaders True False
DisplayHorizontalScrollBar True False
DisplayRowHeaders True False
DisplayTitleBar True False
DisplayToolBar True False
DisplayVerticalScrollBar True False
MaximumWidth 80% 100%
ViewableRange 1:65536 A1:E5

A consolidated list of components added to the form and the properties
modified is as follows:

Control Type

Control Name

Properties

Purpose

Form frmMatrixMath Caption = Matrix Container for all
Laboratory components.
Frame frmInput Caption = Input Data Groups all input controls
Points
Frame frmOutput Caption = Output Groups all output
Coefficients controls.
Spreadsheet sheetMat1 Refer to previous table. Accepts input matrix 1
from user
Spreadsheet sheetMat2 Refer to previous table. Accepts input matrix 2
from user.
Spreadsheet sheetMat3 Refer to previous table. Accepts input matrix 3
from user.
Spreadsheet sheetResultMat Refer to previous table. Displays result matrix
Label 1blAdd Caption = Add Labels Add option

button.

Matrix Calculator

Control Type Control Name Properties Purpose

OptionButton optOperation Index = 0 Option button to perform
addition.

Label 1b1Sub Caption = Subtract Labels Subtract option
button.

OptionButton optOperation Index =1 Option button to perform
subtraction.

Label 1blMult Caption = Multiply Labels Multiply option
button.

OptionButton optOperation Index = 2 Option button to perform
multiplication.

Label 1blDivide Caption = Divide Labels Divide Option
button.

OptionButton optOperation Index = 3 Option button to perform
division.

Label lblLeftDivide Caption = Left Divide | Labels Left Divide
Option button.

OptionButton optOperation Index = 4 Option button to perform
left division.

Label 1blEig Caption = Eigenvalue Labels Eigenvalue
Option button.

OptionButton optOperation Index = 5 Option button to
calculate Eigenvalue
of first matrix.

CommandButton cmdEvaluate Caption = Evaluate Executes function.

Default = True
CommandButton cmdCancel Caption = Cancel Dismisses dialog box

Cancel = True

without executing
function.

4-45

4 Usage Examples

4-46

5 When the design is complete, save the project by clicking File > Save.
When prompted for the project name, type MatrixMathVB.vbp, and for
the form, type frmMatrixMath.frm.

6 To write the underlying code, right-click frmMatrixMath in the Project

window, and click View Code.

The following code listing shows the code to implement. Note that this
code references the control and variable names listed above. If you have
given a different name to any of the controls or any global variable, change
this code to reflect the differences.

Dim theMatCal As matrixMath.matrixMath

Private Sub Form_Initialize()
' Create an instance of the COM object and set the MWArray flags.
' If this fails, exit from the form.
On Error GoTo exit_form
' Create the object.
Set theMatCal = New matrixMath.matrixMath
' Force the input to be of type double.
theMatCal.MWFlags.DataConversionFlags.CoerceNumericToType = mwTypeDouble
' Set the AutoResizeOutput flag to True, so that you do not have to specify
' the size of the output variable as returned by the COM object.
theMatCal.MWFlags.ArrayFormatFlags.AutoResizeOutput = True
' Get the results in a Matrix format.
theMatCal.MWFlags.ArrayFormatFlags.OutputArrayFormat =_
mwArrayFormatMatrix
Exit Sub
exit_form:
' Error handling routine. Since no object is created, display error '
'message and unload the form.
MsgBox ("Error: " & Err.Description)
Unload Me
End Sub

Private Sub Form_Load()
' Set the run time properties for all the components.
frmInputs.TabIndex = 1
sheetMat1.AutoFit = True

Matrix Calculator

' Set the tab order for each component and the viewable range.

' If you need a larger viewable range, you might want to turn the
' horizontal and vertical scroll bars to TRUE.

sheetMat1.TabStop = True

sheetMat1.TabIndex = 1

sheetMat1.Width = 4875

sheetMat1.ViewableRange = "A1:E5"

sheetMat2.TabStop = True
sheetMat2.TabIndex = 2
sheetMat2.Width = 4875
sheetMat2.ViewableRange = "A1:E5"

sheetMat3.TabStop = True
sheetMat3.TabIndex = 3
sheetMat3.Width = 4875
sheetMat3.ViewableRange = "A1:E5"

sheetResultMatTabStop = False
sheetResultMatTabIndex = 1
sheetResultMatWidth = 4875
sheetResultMat.ViewableRange = "A1:E5"

frmOutput.TabIndex = 2

optOperation(0).TabIndex = 3

optOperation(1).TabIndex = 4

optOperation(2).TabIndex = 5

optOperation(3).TabIndex = 6

optOperation(4).TabIndex = 7

optOperation(5).TabIndex = 8
End Sub

Private Sub cmdCancel_Click()
' When the user clicks on the Cancel button, unload the form.
Unload Me

End Sub

Private Sub cmdEval_Click()

' Declare the variables to be used in the code

4-47

4 Usage Examples

4-48

Dim datal As Range

' This is the temporary variable that holds the value entered in

' the spreadsheet.

'Dim finalRows As Double
'Dim finalCols As Double

' Dim tempVal As Double

Dim matArray1 As Variant

Dim matArray2 As Variant

Dim matArray3 As Variant

Dim varArg(2) As Variant

The number of

Variable to hold the value

of input Matrix 1,

passed to the COM object directly.

Variable to hold the value

passed via varArg variable.

Variable to hold the value

passed via varArg variable.

Variable to hold the value

' contains the two optional matrices and is passed to

'Dim mat1() As Double

'Dim matiDimension2() As Variant

of input Matrix 1,

of input Matrix 1,

of input Matrix 1,,
the COM object.

Dim tempRange As Range ' Take the range value as obtained from the

' user input into a temporary range.

Dim resultMat As Variant

' Variable to take the result matrix in

Dim msg As String ' The message thrown by the COM object is taken

' in this variable.

Call sheetResultMat.ActiveSheet.UsedRange.Clear

' Check if the COM object was created properly.

' If not exit

If theMatCal Is Nothing Then GoTo exit_form

' Get the used range of data from the sheetMat1, which will then be

' converted into matArrayit.

Set datal = sheetMati1.ActiveSheet.UsedRange

'finalRows = datail.Rows.Count

'finalCols = datail.Columns.Count

'ReDim mat1(1 To datal.Rows.Count)

Matrix Calculator

'ReDim matiDimension2(1 To datail.Columns.Count)
ReDim matArray1(1 To datal.Rows.Count, 1 To datatl.Columns.Count) As_
Double
For RowCount = 1 To datal.Rows.Count
For ColCount = 1 To datat.Columns.Count
' Extract the values and populate input matrix 1.
Set tempRange = datal.Cells(RowCount, ColCount)
'tempVal = tempRange.Value
'matArray1(RowCount, ColCount) = tempVal
matArray1(RowCount, ColCount) = tempRange.Value
'Set mat1(ColCount) = tempRange.Value
Next ColCount
' matiDimension2(RowCount) = mat1()

Next RowCount

Set datal = sheetMat2.ActiveSheet.UsedRange
If (Not (datail.value = "")) Then

ReDim matArray2(1 To datal.Rows.Count, 1 To datatl.Columns.Count) As_

Double
For RowCount = 1 To datat.Rows.Count
For ColCount = 1 To datat.Columns.Count
Set tempRange = datal.Cells(RowCount, ColCount)
tempVal = tempRange.Value
matArray2(RowCount, ColCount) = tempVal
Next ColCount
Next RowCount
finalCols = datat.Columns.Count
varArg(0) = matArray2
End If

Set datal = sheetMat3.ActiveSheet.UsedRange
If (Not (datail.value = "")) Then

ReDim matArray3(1 To datal.Rows.Count, 1 To datatl.Columns.Count) As_

Double
For RowCount = 1 To datal.Rows.Count
For ColCount = 1 To datail.Columns.Count
Set tempRange = datal.Cells(RowCount, ColCount)
tempVal = tempRange.Value
matArray3(RowCount, ColCount) = tempVal
Next ColCount

4-49

Usage Examples

4-50

Next RowCount
finalCols = datat.Columns.Count
varArg(1) = matArray3

End If

' Based on the operation selected by the user, call the appropriate method
' from the COM object.
If optOperation.Item(0).Value = True Then ' Add

Call theMatCal.addMatrices(2, resultMat, msg, matArrayi, varArg)
ElseIf optOperation.Item(1).Value = True Then ' Subtract

Call theMatCal.subtractMatrices(2, resultMat, msg, matArrayi, varArg)
ElseIf optOperation.Item(2).Value = True Then ' Multiply

Call theMatCal.multiplyMatrices(2, resultMat, msg, matArrayi, varArg)
ElseIf optOperation.Item(3).Value = True Then ' Divide

Call theMatCal.divideMatrices(2, resultMat, msg, matArrayl, varArg)
ElseIf optOperation.Item(4).Value = True Then ' Left Divide

Call theMatCal.leftDivideMatrices(2, resultMat, msg, matArrayt,_

varArg)
ElseIf optOperation.Item(5).Value = True Then ' Eigen Value

Call theMatCal.eigenValue(2, resultMat, msg, matArrayt)
End If

' If the result matrix is a scalar double, display it in the first cell.
If (VarType(resultMat) = vbDouble) Then
Set tempRange = sheetResultMat.Cells(1, 1)

tempRange.Value = resultMat

' If the result matrix is not a scalar double, loop through it to display
' all the elements.
Else
For RowCount = 1 To UBound(resultMat, 1)
For ColCount = 1 To UBound(resultMat, 2)
Set tempRange = sheetResultMat.Cells(RowCount, ColCount)
tempRange.Value = resultMat(RowCount, ColCount)
Next ColCount
Next RowCount
End If
Exit Sub
exit_form:

MsgBox ("Error: " & Err.Description)

Matrix Calculator

Unload Me
End Sub

' If the user changes the operation, clear the result matrix.
Private Sub optOperation_Click(Index As Integer)

Call sheetResultMat.ActiveSheet.Cells.Clear
End Sub

4-51

4 Usage Examples

Curve Fitting

This example is a demonstration of the optimal fitting of a nonlinear function
to a set of data, using the curve-fitting demo fitfun provided with MATLAB.
It uses fminsearch, an implementation of the Nelder-Mead simplex (direct
search) algorithm, to minimize a nonlinear function of several variables.

This example shows you how to create the COM component using MATLAB
Builder for COM and how to use this COM component in a Visual Basic
application independent of MATLAB.

Note This example assumes that you have downloaded the M-code from
http://www.mathworks.com/matlabcentral/ to the matlab/work directory.

Building the Component
To build the component:

1 From the MATLAB command prompt, change directories to matlab/work.

2 Enter the command comtool to start the COM Builder graphical user
interface.

3 Click File > New Project.

4 In the New Project Settings dialog, enter the following settings:

a In the Component name text block enter the component name
CurveFit.

b Press the Tab key to move to the Class name text block.

This automatically fills in the Class name field with the name
CurveFitclass.

¢ The version has a default of 1.0. Leave this number unchanged.

d The Project directory field contains a default of a combination of the
directory where COM Builder was started and the component name,
CurveFit. You can change this to any directory that you choose. If the
directory you choose does not exist, you will be asked to create it.

4-52

http://www.mathworks.com/matlabcentral/

Curve Fitting

e Leave all compiler options unselected.

The New Project Settings dialog box now looks as shown:

«): New Project Settings 10l =|
rProject naming

Component name

CurveFit

Classes

Class name m
| [(s> |

Remaove | 1|]
Froject version
1.0
Froject directory
|DimatiabiworaCunveFit

Erowse... |

rCompiler aption

[Creste s singleton MCR

™ Build debug version

QK | Cancel | Help |

5 Click OK to create the CurveFit project.

Summary of Project Settings
Component name: CurveFit

Class name: CurveFit

Project version: 1.0

Project directory: (accept default or choose another directory)
Compiler options: (leave all unselected)

Building the Project
To build the project:

4-53

4 Usage Examples

1 In the MATLAB Builder window, click Add File.

2 Add fitfun.m and fitdemo.m from the directory
matlab/work/CurveFitDemo.

= MATLAE COM Builder - CurveFit.cbl =] 3]
File Project Build Component Help
rProject File Build Status:
Add File |
- DAMATLABBpSwworkiCurveFitDemotfitdema.
DWMWATLABBpSworklCurveFitDematfitiun.m
L MEMAfiles
4| | »
Edit | Remove ||[| Build | Clear |

3 Click COM Object > Build to create the component.

The component is created and placed in the distrib directory within the
Class directory, as shown:

4-54

Curve Fitting

MATLAB COM Builder - CurveFit.cbl

File Project Build Component Help
rProject File

Add File |

MEX-files

4]

| »

DWMWATLABEpSwark\CurveFitDemaoifitdema.
DWMWATLABEpSwworkiCureFitDemaotfitfun.m

=lofx|

Build Status

LTIy A s SASL s,
mee -d 'DAMATLABG pShwarkiCur:
Setting MSYCDir for use with MS
CurveFit_idlidl

rmwcamtypes.idl

Creating distrib directory.
Moving files to distrib.

Standalone DLL build complete.T

A o

Edit |

Remave

Clear |

Using the Component in Visual Basic

You can call the component from any application that supports COM.

Follow these steps to create a Visual Basic project and add references to the

necessary libraries.

1 Start Visual Basic.

2 Create a new Standard EXE project to display the design form as shown:

4-55

4 Usage Examples

[SEEEL] E!q
— i
1
1l
1 i 2o
] :
; E
=t
E

RO 2P0 00G T D90 RO E

I
M
1
il
7

Note You might have different components on the left side of the window
depending upon the components you have selected for viewing.

3 Click Project > References.
4 Check the following libraries:
CurveFit 1.0 Type Library

MWComUtil 7.1 Type Library

Note If you do not see these libraries, you may not have registered the
libraries using mwregsvr. Refer to “Component Registration” on page 6-4
for information.

Creating the Visual Basic Form

The next step is to create a front end or a Visual Basic form for the application.
End users enter data on the form.

Follow these steps to create a new user form and populate it with the
necessary controls.

1 Click Projects > Component. Alternatively, press Ctrl+T.

4-56

Curve Fitting

the next figure.

. Input Data Points

© | Mumber of Data Poirts I

lstxDr ata IstvDr ata

- Dutput Cosfficient
. Co-efficient 1 Co-efficient 2

- Lambda 1 Lambda 2
A |

Evaluate | L Cancel | L

The following table shows the components and properties that are required:

2 Make sure that Microsoft Windows Common Controls 6.0 are selected.
You will use the ListView control from this component library.

3 Add a series of controls to the blank form to create an interface as shown in

Control Type

Control Name

Properties

Purpose

Form frmCurveFit Caption = Curve Container for all
Fitting components.
Frame frmInput Name = frmInput* Groups all input

Caption = Input Data
Points

controls.

4-57

4 Usage Examples

Control Type

Control Name

Properties

Purpose

Frame frmOutput Name = frmOutput* Groups all output
Caption = Output CoRzie
Coefficients
Label 1blNumDataPoints Caption = Number of Labels the text
Data Points box that takes the
number of data
points the user
wants to enter.
TextBox txtNumOfDatPoints Text = Holds number of
data points the
user wants to
enter. Sets size
of list box added
later.
ListView 1stXData Name = 1stXData X-data values.
CrdlLimes = Truelapsl | D00 B e fme
to 1lvwReport to
Edit = 1lvwAutomatic enable user to add
View = 1vwReport d:ata to the list
view.
ListView 1xtYData Name = 1stYData Y-data values.
GridLines = TrueLabel
Edit = 1lvwAutomatic
View = 1vwReport
Label 1blCoeff1* Caption = Co-efficient | Labels text box for
1 coefficient 1.
Label 1blCoeff2 Caption = Co-efficient | Labels text box for
2 coefficient 2.
TextBox txtCoeff1 Text = Displays value of

coefficient 1 as
calculated by the
COM module.

4-58

Curve Fitting

Control Type Control Name Properties Purpose

TextBox txtCoeff2 Text = Displays value of
coefficient 2 as
calculated by the
COM module.

Label lblLambdat* Caption = Lambda 1 Labels text box for
lambda 1.

Label lblLambda2 Caption = Lambda 2 Labels text box for
lambda 2.

TextBox txtLambdat Text = Displays value
of lambda 1 as
calculated by the
COM module.

TextBox txtLambda?2 Text = Displays value
of lambda 2 as
calculated by the
COM module.

CommandButton cmdEvaluate Caption = Evaluate Executes function.

Default = True
CommandButton cmdCancel Caption = Cancel Dismisses dialog

Cancel = True

box without
executing
function.

When the design is complete, save the project by clicking File > Save.

When prompted for the project name, type CurveFitExample.vbp, and for
the form, type frmCurveFit.frm.

In the Project window, right-click frmCurveFit and click View Code.

The following code listing shows the code to implement. Note that this
code references the control and variable names listed above. If you have

4-59

4 Usage Examples

given a different name to any of the controls or any global variable, change
this code to reflect the differences.

Dim theFit As CurveFit.CurveFit ' Variable to hold the COM Object

' This routine is exectued when the form is initialized.
Private Sub Form_Initialize()
' If the initialize routine fails, handle it accordingly.
On Error GoTo Exit Form
' Create the COM object
Set theFit = New CurveFit.CurveFit
' Set the flags such that the output is transposed.
theFit.MWFlags.ArrayFormatFlags.TransposeOutput = True
Exit Sub
Exit_Form:
' Display the error message and Unload the form if object
creation failed

MsgBox ("Error: " & Err.Description)
MsgBox ("Error: Could not create the COM object")
Unload Me

End Sub

Private Sub Form_Load()
On Error GoTo Exit_Form
' Set the runtime properties of the components

' Set the headers of the column
Call lstXData.ColumnHeaders.Add(, , "X Data")
Call 1lstYData.ColumnHeaders.Add(, , "Y Data")

' Make labeledit property automatic so that you edit the label.
1stXData.LabelEdit = lvwAutomatic
1stYData.LabelEdit = lvwAutomatic

' Make the grid lines for the listbox visible.
1stXData.GridLines = True
1stYData.GridLines = True
Exit Sub
Exit_Form:
" Error handling routine. Since cannot load the form,

4-60

Curve Fitting

' display the error message and unload the program.
MsgBox ("Error: Could not load the form")
MsgBox ("Error: " & Err.Description)
Unload Me
End Sub

Private Sub cmdCancel Click()
" If the user hits the cancel button, unload the form.
Unload Me

End Sub

Private Sub txtNumOfDataPoints_Change()
" If user changes number of data points, clear XData and YData
" listboxes. Provide enough spaces for given number of points.
Dim loopCount As Integer
Call lstXData.ListItems.Clear
Call lstYData.ListItems.Clear

If (txtNumOfDataPoints.Text = "") Then
Exit Sub
End If

For loopCount = 1 To CInt(txtNumOfDataPoints.Text)
1stXData.ListItems.Add (loopCount)
1stYData.ListItems.Add (loopCount)

Next loopCount

End Sub

Private Sub cmdEvaluate Click()
Dim loopCount As Integer ' loop counter
Dim numOfData As Integer ' variable to hold the number of data
' points the user has entered

Dim XData() As Double ' Column Vector for XData, will be passed
'as input to the COM method.

Dim YData() As Double ' Column Vector for YData, will be passed
' as input to the COM method.

Dim Coeff As Variant ' Coefficient values will be returned by
' the COM method in this variable.

Dim Lambda As Variant ' Lambda values will be returned by the
' COM method in this variable.

' If there is an error, handle it accordingly.

4-61

4 Usage Examples

4-62

On Error GoTo Handle Error

If txtNumOfDataPoints.Text = "" Then
Exit Sub
End If

' Get the number of data points.

numOfData = CInt(txtNumOfDataPoints.Text)

ReDim XData(1 To numOfData) As Double

ReDim YData(1 To numOfData) As Double

' Read the input data into respective double arrays.

For loopCount = 1 To numOfData
XData(loopCount) = lstXData.ListItems.Item(loopCount)
YData(loopCount) 1stYData.ListItems.Item(loopCount)

Next loopCount

' Call the COM method

Call theFit.fitdemo(2, Coeff, Lambda, XData, YData)
' Display values of coefficients returned by the COM method.
txtCoeff1.Text = CStr(Format(Coeff (1, 1), "##.####"))
txtCoeff2.Text = CStr(Format(Coeff (1, 2), "##.####"))
txtLambdal.Text = CStr(Format(Lambda(1, 1), "##.####"))
txtLambda2.Text = CStr(Format(Lambda(1, 2), "##.####"))

Exit Sub

Handle_Error:

Error handling routine
MsgBox ("Error: " & Err.Description)

End Sub

Bouncing Ball Simulation

Bouncing Ball Simulation

This example is adapted from the ballode demo provided with MATLAB. It
demonstrates repeated event location, where the conditions are changed after
each terminal event.

This demo computes 10 bounces with calls to ode23. A user-specified damping
factor after each bounce attenuates the speed of the ball. The trajectory is
plotted using the output function odeplot. In addition to the damping factor,
the user can also provide the initial velocity, the maximum number of bounce
to track, and the maximum time until demo is completed.

This example shows you how to create the COM component using MATLAB
Builder for COM and how to use this COM component in a Visual Basic
application independent of MATLAB.

Note This example assumes that you have downloaded the M-code to the
matlab/work directory.

Building the Component
To build the component:

1 From the MATLAB command prompt change directories to
matlab/work/BallODE.

2 Enter the command comtool to start the COM Builder graphical user
interface.

3 Click File > New Project.

4 In the New Project Settings window, enter the following settings:

a In the Component name text block enter the component name
bouncingBall.

b Press Tab to move to the Class name text block.

This automatically fills in the Class name field with the name
bouncingBallclass.

4-63

4 Usage Examples

4-64

¢ The version has a default of 1.0. Leave this number unchanged.

d The Project directory field contains a default of a combination of the
directory where COM Builder was started and the component name,
bouncingBall. You can change this to any directory that you choose. If
the directory you choose does not exist, you will be asked to create it.

e Leave all compiler options unselected.

The New Project Settings window now looks as shown:

«): New Project Settings

rProject naming

Component name

bouncingBall

Class name

[s

Froject version

1.0

Froject directary

|D:ImatlablwormnouncingElall

Erowse... |

rCompiler aption

[Creste s singleton MCR

ok |

10l =|
Classes
houncingBalle
Remuove | |
Cancel | Help |

5 Click OK to create the bouncingBall project.

Summary of Project Settings
Component name: bouncingBall

Class name: bouncingBall

Project version: 1.0

Project directory: (accept default or choose another directory)

Bouncing Ball Simulation

Compiler options: (leave all unselected)

Building the Project

1 From the Project window, click Add File.

Add ballode.m from the directory matlab/work/BallODE as shown:

=k MATLABR COM Builder - bouncingBall.chi
File Project Build Component Help

rPrgject Files

Add File

.:_'_.{-i:'r-:liect Fileg
'— 4 hauncingBall
=0 hfiles

& MEX-Nigs

Edit

2 Click Build > COM Object.

LR O ATLABEpTwarBallODERallode.m

Remove

rEuild Stalus
Building standalone suacotabls =]
et -8 TEMATLABB R ShvorkiBa
Seming MEYVEDIr for use wilk b
hiouneingBEal_idlidl
oaidlidl

objidlidl
unkmamn.idl

wivpias idl
ocidlidl
ofeidl idl
@R il
urimon, bl
sl idl
s armtypes idl

Creating dislib diraclony.
moving files o distrib.

=

=3
Chamcdalnen ML molld cnenmlnd,
+ | L

= Clear

Using the Component in Visual Basic

You can call the component from any application that supports COM.

Follow these steps to create a Visual Basic project and add references to the

necessary libraries.

1 Start Visual Basic.

4-65

4 Usage Examples

2 Create a new Standard EXE project, which displays the design form as
shown:

finf
"
=
=
=

BEE /220 02

Note You might have different components on the left side of the window
depending upon the components you have selected for viewing.

3 Click Project > References.

4 Select the following libraries:

® bouncingBall 1.0 Type Library.(If you named your class something
other than bouncingBall and/or gave a different version number, click
and use the appropriate component and corresponding type library.)

® MWComUtil 7.1 Type Library

4-66

Bouncing Ball Simulation

Note If you do not see these libraries, you may not have registered the
libraries using mwregsvr. Refer to “Component Registration” on page
6-4 for information on this.

Creating the Visual Basic Form

The next step is to create a front end or a Visual Basic form for the application.
End users enter data with this form.

Follow these steps to create a new user form and populate it with the
necessary controls.

1 Click Projects > Component. Alternatively, press Ctrl+T.

2 Check that Microsoft Windows Common Controls 6.0 is selected. You
will use the ListView control from this component library.

3 Add a series of controls to the blank form to create an interface as shown:

&, Bouncing Ball ODE ;Iglil

Iritial Velocity © - [istBaunce

. Damping Factor

Evaluate | . Cancel

4-67

4 Usage Examples

4-68

The following table lists the components to be added and the properties to

be modified.

Control Type

Control Name

Properties

Purpose

Form frmBallOde Caption =Bouncing Ball | Container for all
ODE components.

Frame frmInput Name = frmInput* Groups all input controls.
Caption = Input Data
Points

Frame frmOutput Name = frmOutput* Groups all output
Caption = Output Lozt
Coefficients

Label 1blInitVal Caption = Initial Labels the text box
Velocity txtInitVal.

TextBox txtInitVval Text = Holds initial velocity by
which ball is thrown into
the air.

Label 1blDamp Caption = Damping Labels the text box

Factor txtDamp.

TextBox txtDamp Text = Holds damping factor for
the bounce, that is, the
factor by which the speed
of the ball is reduced
after it bounces.

Label 1lblIter Caption = Number of Labels the text box

Bounces txtIter.

TextBox txtIter Text = Holds number of
iterations or bounces
to track.

Label 1blFinalTime Caption = Maximum Time [Labels the text box
txtFinalTime.

TextBox txtFinalTime Text = Stores time until demo is

completed.

Bouncing Ball Simulation

Control Type Control Name Properties Purpose
ListView 1stBounce Name = 1stBounce Displays time stamp
GridLines = True when ball bounces off the
ground.
LabelEdit = 1lvwManual
View = 1vwReport
CommandButton cmdEvaluate Caption = Evaluate Executes function.
Default = True
CommandButton cmdCancel Caption = Cancel Dismisses dialog box
Cancel = True Wlthqut executing
function.

4 When the design is complete, save the project by clicking File > Save.
When prompted for the project name, type BallOde.vbp, and for the form,
type frmBallOde. frm.

5 In the Project window right-click frmBallOde and click View Code.

The following code listing shows the code to implement. Note that this
code references the control and variable names listed above. If you have
given a different name to any of the controls or any global variable, change
this code to reflect the differences.

Private theBall As Variant

Private Sub cmdCancel Click()

End Sub

Private Sub Form_Initialize()

Dim Len1 As Long
Dim Len2 As Long

On Error GoTo Handle_ Error
' Set length of the each column based on length of the listbox

Len2 =

' Variable to hold the COM object.

If the user presses the Cancel button, unload the form.
Unload Me

' Used to set length of columns for list box.
' Used to set length of columns for list box.

such that the two columns span the maximum area without
creating a horizontal scroll bar.
1stBounce.Width / 2

4-69

4 Usage Examples

Len1 = (1lstBounce.Width - Len2) - 300

' Add column headers to each column in the 1list box.
Call 1stBounce.ColumnHeaders.Add(, , "Bounce", Len1)
Call 1lstBounce.ColumnHeaders.Add(, , "Time", Len2)

' Set tab indices for each component.
txtInitVel.TabIndex = 1
txtDamp.TabIndex = 2
txtIter.TabIndex = 3
txtFinalTime.TabIndex = 4
cmdEvaluate.TabIndex = 5
cmdCancel.TabIndex = 6
1stBounce.TabStop = False

' Create the COM object
' If there is an error, handle it accordingly.
Set theBall = CreateObject("bouncingBall.bouncingBall.1 _0")
Exit Sub
Handle_Error:
" Error handling code
MsgBox ("Error " & Err.Description)
End Sub
Private Sub cmdEvaluate Click()
' Dim R As Range
Dim zeroTime As Variant ' Result variable object.
Dim loopCount As Integer
Dim item As ListItem

" Check if the object was created properly.
" If not, go to the error handling routine.
If theBall Is Nothing Then GoTo Exit Form

" If there is an error, continue with the code.
On Error Resume Next

' Process inputs

" If the user does not provide the values for input parameters,
' use the default values.

If txtDamp.Text = Empty Then

4-70

Bouncing Ball Simulation

txtDamp.Text = 0.9

End If

If txtInitVel.Text = Empty Then
txtInitVel.Text = 20

End If

If txtIter.Text = Empty Then
txtIter.Text = 15

End If

If txtFinalTime.Text = Empty Then
txtFinalTime.Text = 20

End If

"Compute Bouncing ball data

Call theBall.ballode(1, zeroTime, CDbl(txtIter.Text),_

CDbl(txtDamp.Text), CDbl(txtFinalTime.Text),

CDbl(txtInitVel.Text))

' Display the output values (time stamp when ball bounces on

' the ground).

Call 1lstBounce.ListItems.Clear

For loopCount = LBound(zeroTime, 1) To UBound(zeroTime, 1)
Set item = lstBounce.ListItems.Add(, , Format(loopCount))
Call item.ListSubItems.Add(, , Format(zeroTime(loopCount,
1), "##.#H#H#"))

Next

Call 1lstBounce.Refresh

GoTo Exit Form
Handle_Error:

" Error handling routine

MsgBox (Err.Description)
Exit_Form:
End Sub

4-71

4 Usage Examples

4-72

Troubleshooting

5 Troubleshooting

5-2

The following table shows diagnostic messages you might encounter, probable
causes for the message, and suggested solutions.

Note MATLAB Builder for COM uses the MATLAB Compiler to generate
components. This means that you might see diagnostic messages from the
MATLAB Compiler. See the “Troubleshooting” section of the MATLAB
Compiler documentation for more information about those messages.

MATLAB Builder for COM Diagnostic Messages and Suggested Solutions

Message

Probable Cause

Suggested Solution

MBUILD.BAT: Error:
chosen compiler does
not support building COM
objects.

The

The chosen compiler does
not support building COM
objects.

Rerun mbuild -setup and choose
a supported compiler.

Error in

component_name .class_name.X:
Error getting data
conversion flags.

Usually caused by
mwcomutil.d1ll not being
registered.

1 Open a DOS window.

2 Change directories to
matlabroot\bin\win32.

3 Run the following command:
mwregsvr mwcomutil.dll

(matlabroot is your root
MATLAB directory.)

Error in VBAProject:
ActiveX component can't
create object.

1. Project DLL is not
registered.

2. An incompatible
MATLAB DLL exists
somewhere on the system
path.

If the DLL is not registered,

1 Open a DOS window.

2 Change directories to
projectdir\distrib.

3 Run the following command:
mwregsvr projectdll.dll

(projectdir represents the
location of your project files).

MATLAB Builder for COM Diagnostic Messages and Suggested Solutions (Continued)

Message

Probable Cause

Suggested Solution

Error in VBAProject:
Automation error The

specified module could not

be found.

This usually occurs if
MATLAB is not on the
system path.

See Required Locations to
Develop and Use Components on
page 5-4

LoadLibrary

("component_name_1_0.d11")

failed - The specified

module could not be found.

You may get this error
message while registering
the project DLL from the
DOS prompt. This usually
occurs if MATLAB is not
on the system path.

See Required Locations to
Develop and Use Components on
page 5-4

You might also get this
error if you try to deploy
your component without
adding the path for the
DLL to the system path on
the target machine.

On the target machine where the

COM component is to be used:

1 Use the extractCTF.exe
utility to decompress the .ctf
file generated by COM Builder
when you built the COM
component.

2 Look at the files in the CTF,
and note the path for the DLL.

3 Add this path to the system
path.

See the MATLAB Compiler
documentation for

more information about
extractctf.exe.

If your application generates a diagnostic message indicating that a module
cannot be found, it could be that the MCR is not located properly on your path
or that the CTF file is not in the proper directory. How to fix this problem
depends on whether it occurs on a development machine (where you are using
COM Builder to create a component) or the target machine (where you are
trying to use a component in your application).

5 Troubleshooting

5-4

Required Locations to Develop and Use Components

Development Machine

Target Machine

MCR | Make sure that Verify that
matlabroot\bin\win32 mer_root\ver\runtime\win32
appears on your system appears on your system path.
path ahead of any other (mcr_root is your root MCR
MATLAB installations. directory.)

(matlabroot is your root
MATLAB directory.)
CTF Verify that the CTF file is in the same directory as your program’s

executable file.

How MATLAB Builder for
COM Works Internally

Overview of Internal Processes
(p. 6-2)

Component Registration (p. 6-4)

Data Conversion Rules (p. 6-8)

Calling Conventions (p. 6-22)

Descibes the steps in the build
process

Describes the registration process
for MATLAB Builder for COM
components.

Converting between MATLAB and
COM variants.

Describes the calling conventions
for MATLAB Builder for COM
components.

O How MATLAB Builder for COM Works Infernally

6-2

Overview of Internal Processes

The process of creating a MATLAB Builder for COM component is completely
automatic from a user point of view. You specify a list of M-files to process
and a few additional pieces of information, such as the component name, the
class names, and the version number.

The internal build process involves the following steps:

1 “Code Generation” on page 6-2

2 “Create Interface Definitions” on page 6-2

3 “C++ Compilation” on page 6-3

4 “Linking and Resource Binding” on page 6-3

5 “Component Registration” on page 6-3

Code Generation

The first step in the build process generates all source code and other
supporting files needed to create the component. It also creates the main
source file (mycomponent_dl1.cpp) containing the implementation of each
exported function of the DLL. The compiler additionally produces an Interface
Description Language (IDL) file (nycomponent_idl.idl), containing the
specifications for the component’s type library, interface, and class, with
associated GUIDs. (GUID is an acronym for Globally Unique Identifier, a
128-bit integer guaranteed always to be unique.)

Created next are the C++ class definition and implementation files
(myclass_com.hpp and myclass_com.cpp). In addition to these source
files, the compiler generates a DLL exports file (nycomponent.def), a
resource script (mycomponent.rc), and a Component Technology File
(mycomponent.ctf). See the MATLAB Compiler documentation for a
discussion of ctf files.

Create Interface Definitions

The second step of the build process invokes the IDL compiler on the IDL file
generated in step 1 (mycomponent _idl.idl), creating the interface header

Overview of Internal Processes

file (mycomponent_idl.h), the interface GUID file (mycomponent _idl i.c),
and the component type library file (nycomponent_idl.t1lb). The interface
header file contains type definitions and function declarations based on the
interface definition in the IDL file. The interface GUID file contains the
definitions of the GUIDs from all interfaces in the IDL file. The component
type library file contains a binary representation of all types and objects
exposed by the component.

C++ Compilation

The third step compiles all C/C++ source files generated in steps 1 and

2 into object code. One additional file containing a set of C++ template
classes (mclcomclass.h) is included at this point. This file contains template
implementations of all necessary COM base classes, as well as error handling
and registration code.

Linking and Resource Binding

The fourth step produces the finished DLL for the component. This step
invokes the linker on the object files generated in step 3 and the necessary
MATLAB libraries to produce a DLL component (mycomponent_ 1 _0.d11l). The
resource compiler is then invoked on the DLL, along with the resource script
generated in step 1, to bind the type library file generated in step 2 into the
completed DLL.

Component Registration

The final build step registers the DLL on the system, as described in the
next section.

6-3

O How MATLAB Builder for COM Works Infernally

6-4

Component Registration

When MATLAB Builder for COM creates a component, it automatically
generates a binary file called a type library. As a final step of the build, this
file is bound with the resulting DLL as a resource.

Self-Registering Components

COM Builder components are all self-registering. A self-registering component
contains all the necessary code to add or remove a full description of itself to
or from the system registry. The mwregsvr utility, distributed with the MCR,
registers self-registering DLLs. For example, to register a component called
mycomponent 1 0.d1l, issue this command at the DOS command prompt.

mwregsvr mycomponent_1 0.d1l1l

When mwregsvr completes the registration process, it displays a message
indicating success or failure. Similarly, the command

mwregsvr /u mycomponent_1_0.d1l
unregisters the component.

A COM Builder component installed onto a particular machine must be
registered with mwregsvr. If you move a component into a different directory
on the same machine, you must repeat the registration process. When
deleting a component from a specific machine, first unregister it to ensure
that the registry does not retain erroneous information.

Note The mwregsvr utility invokes a process that is similar to regsvr32.exe,
except that mwregsvr does not require interaction with a user at the console.
The regsvr32.exe process belongs to the Windows OS and is used to register
dynamic-link libraries and ActiveX controls in the registry. This program is
important for the stable and secure running of your computer and should not
be terminated. You can use regsvr32.exe as an alternative to mwregsvr to
register your library.

Component Registration

Globally Unique Identifier (GUID)

Information is stored in the registry as keys with one or more associated
named values. The keys themselves have values of primarily two types:

readable strings and GUIDs. (GUID is an acronym for Globally Unique

Identifier, a 128-bit integer guaranteed always to be unique.)

COM Builder automatically generates GUIDs for COM classes, interfaces,
and type libraries that are defined within a component at build time, and
codes these keys into the component’s self-registration code.

The interface to the system registry is directory based. COM-related
information is stored under a top-level key called HKEY CLASSES ROOT. Under
HKEY_CLASSES_ROOT are several other keys under which COM Builder writes
component information.

See the following table for a list of the keys and their definitions.

Key Definition

HKEY_CLASSES_ROOT\CLSID Information about COM classes on
the system. Each component
creates a new key under
HKEY_ CLASSES ROOT\CLSID for
each of its COM classes. The key
created has a value of the GUID
that has been assigned the class
and contains several subkeys with
information about the class.

HKEY_CLASSES_ROOT\Interface Information about COM interfaces
on the system. Each component
creates a new key under
HKEY_ CLASSES ROOT\Interface for
each interface it defines. This key
has the value of the GUID assigned
to the interface and contains subkeys
with information about the interface.

6-5

O How MATLAB Builder for COM Works Infernally

6-6

Key
HKEY_CLASSES_ROOT\TypeLib

HKEY_CLASSES_ROOT\<ProgID>,
HKEY_CLASSES_ROOT\<VerIndProgID>

Definition

Information about type libraries on
the system. Each component creates
a key for its type library with the
value of the GUID assigned to it.
Under this key a new key is created
for each version of the type library.
Therefore, new versions of type
libraries with the same name reuse
the original GUID but create a new
subkey for the new version.

These two keys are created for
the component’s Program ID and
Version Independent Program ID.
These keys are constructed from
strings of the following forms:
component -name . class -name
component -name . class -name
version-number.

These keys are useful for
creating a class instance from the
component and class names instead
of the GUIDs.

Versioning

MATLAB Builder for COM components support a simple versioning
mechanism designed to make building and deploying multiple versions of the
same component easy to implement. The version number of a component
appears as part of the DLL name, as well as part of the version-dependent ID

in the system registry.

When a component is created, you can specify a version number. (The default
is 1.0). During the development of a specific version of a component, the
version number should be kept constant. When this is done, the MATLAB
Compiler, in certain cases, reuses type library, class, and interface GUIDs
for each subsequent build of the component. This avoids the creation of an

Component Registration

excessive number of registry keys for the same component during multiple
builds, as occurs if new GUIDs are generated for each build.

When a new version number is introduced, the MATLAB Compiler generates
new class and interface GUIDs so that the system recognizes them as distinct
from previous versions, even if the class name is the same. Therefore, once you
deploy a built component, use a new version number for any changes made
to the component. This ensures that after you deploy the new component, it
is easy to manage the two versions.

The MATLAB Compiler implements the versioning rules for a specific
component name, class name, and version number by querying the system
registry for an existing component with the same name:

¢ If an existing component has the same version, it uses the GUID of the
existing component’s type library. If the name of the new class matches the
previous version, it reuses the class and interface GUIDs. If the class names
do not match, it generates new GUIDs for the new class and interface.

e Ifit finds an existing component with a different version, it uses the
existing type library GUID and creates a new subkey for the new version
number. It generates new GUIDs for the new class and interface.

e Ifit does not find an existing component of the specified name, it generates
new GUIDs for the component’s type library, class, and interface.

O How MATLAB Builder for COM Works Infernally

6-8

Data Conversion Rules

This section describes the data conversion rules for MATLAB Builder for
COM components. These components are dual interface COM objects that
support data types compatible with Automation.

Note Automation (formerly called OLE Automation) is a technology that
allows software packages to expose their unique features to scripting tools
and other applications. Automation uses the Component Object Model (COM),
but may be implemented independently from other OLE features, such as
in-place activation.

When a method is invoked on a COM Builder component, the input
parameters are converted to MATLAB internal array format and passed to the
compiled MATLAB function. When the function exits, the output parameters
are converted from MATLAB internal array format to COM Automation types.

The COM client passes all input and output arguments in the compiled
MATLAB functions as type VARIANT. The COM VARIANT type is a union of
several simple data types. A type VARIANT variable can store a variable of any
of the simple types, as well as arrays of any of these values.

The Win32 Application Program Interface (API) provides many functions for
creating and manipulating VARIANTs in C/C++, and Visual Basic provides
native language support for this type. See the Visual Studio documentation
for definitions and API support for COM VARIANTs. VARIANT variables are self
describing and store their type code as an internal field of the structure.

Note This discussion of data refers to both VARIANT and Variant data types.
VARIANT is the C++ name and Variant is the corresponding data type in
Visual Basic.

See VARIANT Type Codes Supported on page 6-9 for a list of the VARIANT type
codes supported by COM Builder components.

Data Conversion Rules

See MATLAB to COM VARIANT Conversion Rules on page 6-11 and COM
VARIANT to MATLAB Conversion Rules on page 6-15 for conversion rules
between COM VARIANTs and MATLAB arrays.

VARIANT Type Codes Supported

Variant Visual

VARIANT Type Code Type Code Basic

(C/C++) C/C++ Type (Visual Basic) | Type Definition

VT_EMPTY - VbEmpty - Uninitialized
VARIANT

VT I1 char - - Signed one-byte
character

VT_UI1 unsigned char | vbByte Byte Unsigned one-byte
character

VT 12 short vbInteger Integer Signed two-byte
integer

VT UI2 unsigned - - Unsigned two-byte

short integer

VT 14 long vbLong Long Signed four-byte
integer

VT UI4 unsigned long | - - Unsigned four-byte
integer

VT R4 float vbSingle Single IEEE four-byte
floating-point value

VT _R8 double vbDouble Double IEEE eight-byte
floating-point value

VT _CY cy* vbCurrency Currency | Currency value
(64-bit integer, scaled
by 10,000)

VT _BSTR BSTR* vbString String String value

O How MATLAB Builder for COM Works Infernally

VARIANT Type Codes Supported (Continued)

VARIANT Type Code

(C/C++)

C/C++ Type

Variant
Type Code
(Visual Basic)

Visual
Basic

Type

Definition

VT_ERROR

SCODE*

VvbError

A HRESULT (Signed
four-byte integer
representing a COM
error code)

VT_DATE

DATE™

vbDate

Date

Eight-byte floating
point value
representing date
and time

VT_INT

int

Signed integer;
equivalent to type
int

VT_UINT

unsigned int

Unsigned integer;
equivalent to type
unsigned int

VT_DECIMAL

DECIMAL™*

vbDecimal

96-bit (12-byte)
unsigned integer,
scaled by a variable
power of 10

VT_BOOL

VARIANT_BOOL*

vbBoolean

Boolean

Two-byte Boolean
value (OxFFFF =
True; 0x0000 = False)

VT_DISPATCH

IDispatch*

vbObject

Object

IDispatch* pointer
to an object

VT_VARIANT

VARIANT*

vbVariant

Variant

VARIANT (can only be
specified if combined
with VT_BYREF or
VT_ARRAY)

6-10

Data Conversion Rules

VARIANT Type Codes Supported (Continued)

VARIANT Type Code

(C/C++)

Variant Visual
Type Code Basic
C/C++ Type (Visual Basic) | Type

Definition

<anything>|VT_ARRAY

Bitwise combine
VT_ARRAY with any
basic type to declare
as an array

<anything>|VT_BYREF

Bitwise combine

VT _BYREF with any
basic type to declare
as a reference to a

value
* Denotes
Windows-specific type.
Not part of standard
C/C++.
MATLAB to COM VARIANT Conversion Rules
MATLAB Data VARIANT Type for VARIANT Type for
Type Scalar Data Array Data Comments
cell A 1-by-1 cell array A multidimensional

converts to a single
VARIANT with a type
conforming to the
conversion rule for the
MATLAB data type of
the cell contents.

cell array converts

to a VARIANT of type
VT_VARIANT |VT_ARRAY
with the type of

each array member
conforming to the
conversion rule for the
MATLAB data type of
the corresponding cell.

6-11

O How MATLAB Builder for COM Works Infernally

6-12

MATLAB to COM VARIANT Conversion Rules (Continued)

MATLAB Data VARIANT Type for VARIANT Type for
Type Scalar Data Array Data Comments
structure VT_DISPATCH VT _DISPATCH A MATLAB struct
array is converted to
an MWStruct object.
(See “Class MWStruct”
on page 8-16.) This
object is passed as a
VT_DISPATCH type.
char A 1-by-1 char matrix A 1-by-L char matrix is | Arrays of strings are
converts to a VARIANT assumed to represent not supported as char
of type VT_BSTR with a string of length Lin matrices. To pass an
string length = 1. MATLAB. This case array of strings, use
converts to a VARIANT | a cell array of 1-by-L
of type VT_BSTR with a | char matrices.
string length = L. char
matrices of more than
one row, or of a higher
dimensionality convert
to a VARIANT of type
VT_BSTR|VT_ARRAY.
Each string in the
converted array
is of length 1 and
corresponds to each
character in the
original matrix.
sparse VT_DISPAATCH VT_DISPATCH A MATLAB sparse

array is converted to
an MWSparse object.
(See “Class MWSparse”
on page 8-26.) This
object is passed as a
VT_DISPATCH type.

Data Conversion Rules

MATLAB to COM VARIANT Conversion Rules (Continued)

MATLAB Data VARIANT Type for VARIANT Type for
Type Scalar Data Array Data Comments
double A real 1-by-1 double A real Complex arrays are
matrix converts to multidimensional passed to and from
a VARIANT of type double matrix converts | compiled M-functions
VT _R8. A complex to a VARIANT of type using the MWComplex
1-by-1 double matrix VT_R8|VT_ARRAY. class. See “Class
converts to a VARIANT | A complex MWComplex” on page
of type VT_DISPATCH. multidimensional 8-24.)
double matrix converts
to a VARIANT of type
VT _DISPATCH.
single A real 1-by-1 single A real Complex arrays are
matrix converts to a multidimensional passed to and from
VARIANT of type VT_R4. | single matrix converts | compiled M-functions
A complex 1-by-1 single | to a VARIANT of type using the MWComplex
matrix converts to VT_R4|VT_ARRAY. class.
a VARIANT of type A complex
VT_DISPATCH. multidimensional
single matrix converts
to a VARIANT of type
VT _DISPATCH.
int8 A real 1-by-1 int8 A real Complex arrays are

matrix converts to a
VARIANT of type VT_I1.
A complex 1-by-1 int8
matrix converts to

a VARIANT of type
VT_DISPATCH.

multidimensional int8
matrix converts to

a VARIANT of type

VT _I1|VT_ARRAY.

A complex
multidimensional int8
matrix converts to

a VARIANT of type

VT _DISPATCH.

passed to and from
compiled M-functions
using the MWComplex
class.

6-13

O How MATLAB Builder for COM Works Infernally

6-14

MATLAB to COM VARIANT Conversion Rules (Continued)

MATLAB Data VARIANT Type for VARIANT Type for
Type Scalar Data Array Data Comments
uint8 A real 1-by-1 uint8 A real Complex arrays are
matrix converts to multidimensional passed to and from
a VARIANT of type uint8 matrix converts | compiled M-functions
VT UI1. A complex to a VARIANT of type using the MWComplex
1-by-1 uint8 matrix VT_UI1|VT_ARRAY.A class.
converts to a VARIANT | complex
of type VT_DISPATCH. multidimensional
uint8 matrix converts
to a VARIANT of type
VT _DISPATCH.
int16 A real 1-by-1 int16 A real Complex arrays are
matrix converts to a multidimensional passed to and from
VARIANT of type VT_I2. | int16 matrix converts | compiled M-functions
A complex 1-by-1 int16 | to a VARIANT of type using the MWComplex
matrix converts to VT _I2|VT_ARRAY. class.
a VARIANT of type A complex
VT_DISPATCH. multidimensional
int16 matrix converts
to a VARIANT of type
VT _DISPATCH.
uint16 A real 1-by-1 uint16 A real Complex arrays are
matrix converts to multidimensional passed to and from

a VARIANT of type
VT_UI2. A complex
1-by-1 uint16 matrix
converts to a VARIANT
of type VT_DISPATCH.

uint16 matrix converts
to a VARIANT of type
VT_UI2|VT_ARRAY.

A complex
multidimensional
uint16 matrix converts
to a VARIANT of type
VT _DISPATCH.

compiled M-functions
using the MWComplex
class.

Data Conversion Rules

MATLAB to COM VARIANT Conversion Rules (Continued)

MATLAB Data VARIANT Type for VARIANT Type for
Type Scalar Data Array Data Comments
int32 A 1-by-1 int32 matrix | A multidimensional Complex arrays are
converts to a VARIANT of | int32 matrix converts | passed to and from
type VT_I4. A complex | to a VARIANT of type compiled M-functions
1-by-1 int32 matrix VT_I4|VT_ARRAY. using the MWComplex
converts to a VARIANT | A complex class.
of type VT_DISPATCH. multidimensional
int32 matrix converts
to a VARIANT of type
VT _DISPATCH.
uint32 A 1-by-1 uint32 matrix | A multidimensional Complex arrays are

converts to a VARIANT of
type VT_UI4. A complex
1-by-1 uint32 matrix
converts to a VARIANT
of type VT_DISPATCH.

uint32 matrix converts
to a VARIANT of type
VT _UI4|VT_ARRAY.

A complex
multidimensional
uint32 matrix converts
to a VARIANT of type
VT_DISPATCH.

passed to and from
compiled M-functions
using the MWComplex
class.

Function handle VT_EMPTY VT_EMPTY Not supported
Java class VT _EMPTY VT_EMPTY Not supported
User class VT _EMPTY VT_EMPTY Not supported
logical VT_Bool VT_Bool|VT_ARRAY

COM VARIANT to MATLAB Conversion Rules

VARIANT Type

array data)

MATLAB Data Type (scalar or

Comments

VT _EMPTY N/A Empty array created.
VT _I1 int8
VT_UI1 uints

6-15

O How MATLAB Builder for COM Works Infernally

COM VARIANT to MATLAB Conversion Rules (Continued)

MATLAB Data Type (scalar or

VARIANT Type array data) Comments

VT_I2 int16

VT _UI2 uint16

VT_I4 int32

VT _UI4 uint32

VT_R4 single

VT_R8 double

VT_CY double

VT_BSTR char A VARIANT of type VT_BSTR
converts to a 1-by-L MATLAB
char array, where L = the
length of the string to be
converted. A VARIANT of type
VT_BSTR|VT_ARRAY converts to
a MATLAB cell array of 1-by-L
char arrays.

VT_ERROR int32

VT_DATE double VARIANT dates are stored as

6-16

doubles starting at midnight
Dec. 31, 1899. MATLAB
dates are stored as doubles
starting at 0/0/00 00:00:00.
Therefore, a VARIANT date

of 0.0 maps to a MATLAB
numeric date of 693960.0.
VARIANT dates are converted
to MATLAB double types and
incremented by 693960.0.
VARIANT dates can be optionally
converted to strings. See “Data
Conversion Flags” on page 6-20

Data Conversion Rules

COM VARIANT to MATLAB Conversion Rules (Continued)

VARIANT Type

MATLAB Data Type (scalar or
array data)

Comments

for more information on type

coercion.
VT_INT int32
VT_UINT unit32
VT_DECIMAL double
VT_BOOL logical
VT_DISPATCH (varies) IDispatch* pointers are

treated within the context of
what they point to. Objects
must be supported types with
known data extraction and
conversion rules, or expose a
generic Value property that
points to a single VARIANT type.
Data extracted from an object
is converted based upon the
rules for the particular VARIANT
obtained.

Currently, support exists for
Excel Range objects as well as
COM Builder types MWStruct,
MWComplex, MWSparse, and
MWArg. See “Utility Library
Classes” on page 8-3 for
information on COM Builder

types.

6-17

O How MATLAB Builder for COM Works Infernally

COM VARIANT to MATLAB Conversion Rules (Continued)

VARIANT Type

MATLAB Data Type (scalar or
array data)

Comments

<anything>|VT_BYREF

(varies)

Pointers to any of the basic
types are processed according
to the rules for what they point
to. The resulting MATLAB
array contains a deep copy of
the values.

<anything>|VT_ARRAY

(varies)

Multidimensional VARIANT
arrays convert to
multidimensional MATLAB
arrays, each element converted
according to the rules for the
basic types. Multidimensional
VARIANT arrays of type
VT_VARIANT |VT_ARRAY convert
to multidimensional cell arrays,
each cell converted according to
the rules for that specific type.

Array Formatting Flags

COM Builder components have flags that control how array data is formatted
in both directions. Generally, you should develop client code that matches the
intended inputs and outputs of the MATLAB functions with the corresponding
methods on the compiled COM objects, in accordance with the rules listed

in MATLAB to COM VARIANT Conversion Rules on page 6-11 and COM
VARIANT to MATLAB Conversion Rules on page 6-15. In some cases this is
not possible, for example, when existing MATLAB code is used in conjunction
with a third-party product like Excel.

The following table shows the array formatting flags.

6-18

Data Conversion Rules

Array Formatting Flags

Flag

Description

InputArrayFormat

Defines the array formatting rule used on input arrays.
An input array is a VARIANT array, created

by the client, sent as an input parameter

to a method call on a compiled COM object.

Valid values for this flag are mwArrayFormatAsIs,
mwArrayFormatMatrix, and mwArrayFormatCell.

mwArrayFormatAsIs passes the array unchanged.

mwArrayFormatMatrix (default) formats all arrays

as matrices. When the input VARIANT is of type
VT_ARRAY | type, where type is any numeric type,
this flag has no effect. When the input VARIANT is of
type VT_VARIANT |VT_ARRAY, VARIANTSs in the array are
examined. If they are single-valued and homogeneous
in type, a MATLAB matrix of the appropriate type is
produced instead of a cell array.

mwArrayFormatCell interprets all arrays as MATLAB
cell arrays.

InputArrayIndFlag

Sets the input array indirection level used with the
InputArrayFormat flag (applicable only to nested arrays,
i.e., VARIANT arrays of VARIANTs, which themselves are
arrays). The default value for this flag is zero, which
applies the InputArrayFormat flag to the outermost
array. When this flag is greater than zero, e.g., equal

to N, the formatting rule attempts to apply itself to the
Nth level of nesting.

OutputArrayFormat

Defines the array formatting rule used on output arrays.
An output array is a MATLAB array, created by the
compiled COM object, sent as an output parameter
from a method call to the client. The values for this
flag, mwArrayFormatAsIs, mwArrayFormatMatrix, and
mwArrayFormatCell, cause the same behavior as the
corresponding InputArrayFormat flag values.

6-19

O How MATLAB Builder for COM Works Infernally

6-20

Array Formatting Flags (Continued)

Flag

Description

OutputArrayIndFlag (Applies to nested cell arrays only.) Output array

indirection level used with the OutputArrayFormat flag.
This flag works exactly like InputArrayIndFlag.

AutoResizeOutput

(Applies to Excel ranges only.) When the target output
from a method call is a range of cells in an Excel
worksheet and the output array size and shape is not
known at the time of the call, set this flag to True to
resize each Excel range to fit the output array.

TransposeOutput

Set this flag to True to transpose the output arguments.
Useful when calling a COM Builder component from
Excel where the MATLAB function returns outputs as
row vectors, and you want the data in columns.

Data Conversion Flags

COM Builder components contain flags to control the conversion of certain
VARIANT types to MATLAB types. These flags are as follows:

® “CoerceNumericToType” on page 6-20

e “InputDateFormat” on page 6-21

® “OutputAsDate As Boolean” on page 6-21
® “DateBias As Long” on page 6-21

CoerceNumericToType

This flag tells the data converter to convert all numeric VARIANT data

to one specific MATLAB type. VARIANT type codes affected by this flag

are VT_I1, VT _UI1,VT_I2, VT _UI2, VT_I4, VT _UI4, VT R4, VT _R8, VT_CY,
VT_DECIMAL, VT_INT, VT_UINT, VT_ERROR, VT_BOOL, and VT_DATE. Valid values
for this flag are mwTypeDefault, mwTypeChar, mwTypeDouble, mwTypeSingle,
mwTypeLogical, mwTypeInt8, mwTypeUint8, mwTypeInt16, mwTypeUint16,
mwTypeInt32, and mwTypeUint32.

Data Conversion Rules

The default for this flag, mwTypeDefault, converts numeric data according to
the rules listed in “Data Conversion Rules” on page 6-8.

InputDateFormat

This flag tells the data converter how to convert VARIANT dates to MATLAB
dates. Valid values for this flag are mwDateFormatNumeric (default) and
mwDateFormatString. The default converts VARIANT dates according

to the rule listed in VARIANT Type Codes Supported on page 6-9 . The

mwDateFormatString flag converts a VARIANT date to its string representation.

This flag only affects VARIANT type code VT_DATE.

OutputAsDate As Boolean

This flag instructs the data converter to process an output argument as a
date. By default, numeric dates that are output parameters from compiled
MATLAB functions are passed as Doubles that need to be decremented by
the COM date bias (693960) as well as coerced to COM dates. Set this flag to
True to convert all output values of type Double.

DateBias As Long

This flag sets the date bias for performing COM to MATLAB numeric date
conversions. The default value of this property is 693960, which represents
the difference between the COM Date type and MATLAB numeric dates.
This flag allows existing MATLAB code that already performs the increment
of numeric dates by 693960 to be used unchanged with COM Builder
components. To process dates with such code, set this property to 0.

6-21

O How MATLAB Builder for COM Works Infernally

6-22

Calling Conventions

When you use encapsulated MATLAB functions in your code, you might need
to understand some or all of the following aspects of MATLAB Builder for
COM processes.

Producing a COM Class

Producing a COM class requires the generation of

® A class definition file in Interface Description Language (IDL)

® One or more associated C++ class definition/implementation files

COM Builder automatically produces the necessary IDL and C/C++ code to
build each COM class in the component. This process is generally transparent
to you when you use COM Builder to generate a COM component, and to
users of the COM component when they program with it.

For information about IDL and C++ coding rules for building COM objects
and for mappings to other languages, see articles in the MSDN library.

The following table shows the mapping of a generic M-function to IDL code
and to Visual Basic.

http://msdn.microsoft.com/library/

Calling Conventions

Generic
M-Code

function [Y1, Y2, ..., varargout] = foo(X1, X2, ..., varargin)

IDL Code

HRESULT foo([in] long nargout,
[in,out] VARIANT* Y1,
[in,out] VARIANT* Y2,

[in,out] VARIANT* varargout,
[in] VARIANT X1,
[in] VARIANT X2,

[in] VARIANT varargin);

Visual Basic
Code

Sub foo(nargout As Long, _
Y1 As Variant, _
Y2 As Variant, _

varargout As Variant, _
X1 As Variant, _
X2 As Varaint, _

varargin As Variant)

IDL Mapping

The IDL function definition is generated by producing a function with the
same name as the original M-function and an argument list containing all
inputs and outputs of the original plus one additional parameter, nargout.

When present, the nargout parameter is an [in] parameter of type long. It
is always the first argument in the list. This parameter allows correct passage
of the MATLAB nargout parameter to the compiled M-code. The nargout

6-23

O How MATLAB Builder for COM Works Infernally

6-24

parameter is not produced if you encapsulate an M-function containing no
outputs.

Following the nargout parameter, the outputs are listed in the order they
appear on the left side of the MATLAB function, and are tagged as [in,out],
meaning that they are passed in both directions.

The function inputs are listed next, appearing in the same order as they
do on the right side of the original function. All inputs are tagged as [in]
parameters.

When present, the optional varargin/varargout parameters are always listed
as the last input parameters and the last output parameters. All parameters
other than nargout are passed as COM VARIANT types. “Data Conversion
Rules” on page 6-8 lists the rules for conversion between MATLAB arrays
and COM VARIANTS.

Visual Basic Mapping

Visual Basic provides native support for COM VARIANTS with the Variant
type, as well as implicit conversions for all Visual Basic basic types to and
from Variants. In general, arrays/scalars of any Visual Basic basic type, as
well as arrays/scalars of Variant types, can be passed as arguments.

COM Builder components also provide direct support for the Excel Range
object, used by Visual Basic for Applications to represent a range of cells in
an Excel worksheet.

See the Visual Basic for Applications documentation included with Microsoft
Excel for more information on Visual Basic data types.

See the MSDN Library for more information about Visual Basic and about
Excel Range manipulation.

http://msdn.microsoft.com/library/

Functions — Alphabetical
List

componentinfo

7-2

Purpose

Syntax

Arguments

Description

Query system registry for details about a component created with
MATLAB Builder for COM

componentinfo
componentinfo (component_name)
componentinfo (component_name, major_revision_number)

componentinfo (component_name, major_revision_number, minor_revision_number)

component_name MATLAB string providing the name
of a MATLAB Builder for COM
component. Names are case sensitive.
If this argument is not supplied, the
function returns information on all
installed components.

major_revision_number Component major revision number.
If this argument is not supplied, the
function returns information on all
major revisions.

minor_revision_number Component minor revision number.
Default value is 0.

componentinfo

returns information for all components installed on the system.
componentinfo (component_name)

returns information for all revisions of component name.
componentinfo (component_name, major_revision_number)

returns information for the most recent minor revision corresponding to
major_revision_number of component name..

componentinfo (component_name, major_revision_number,
minor_revision_number)

componentinfo

returns information for the specific major and minor version of
component_name.

The return value is an array of structures representing all the registry
and type information needed to load and use the component.

When you supply a component name, major_revision number and
minor_revision_number are interpreted as shown below.

Value | Information Returned

>0 Information on a specific major and minor revision

0 Information on the most recent revision
When omitted, minor revision number is assumed to be
equal to 0.

<0 Information on all versions

The information about a component has the fields shown in the
following table.

Registry Information Returned by componentinfo

Field Description

Name Component name

TypelLib Component type library

LIBID Component type library GUID

MajorRev Major version number

MinorRev Minor version number

FileName Type library filename and path. Since all
Excel Builder components have the type
library bound into the DLL, this filename is
the same as the DLL name and path.

7-3

componentinfo

Field

Description

Interfaces

An array of structures defining all interface
definitions in the type library. Each structure
contains two fields:

e Name — Interface name

e IID — Interface GUID

CoClasses

7-4

An array of structures defining all COM
classes in the component. Each structure
contains these fields:

¢ Name — Class name
® CLSID — GUID of the class
® ProgID — Version dependent program ID

® VerIndProgID — Version independent
program ID

® InprocServer32 — Full name and path to
component DLL

® Methods — A structure containing function
prototypes of all class methods defined for
this interface. This structure contains four
fields:

= IDL — An array of Interface Description
Language function prototypes

= M — An array of MATLAB function
prototypes

= C — An array of C-language function
prototypes

= VB — An array of VBA function
prototypes

e Properties — A cell array containing
the names of all class properties.

componentinfo

e Events — A structure containing
function prototypes of all events
defined for this class. This structure
contains four fields:

e IDL — An array of IDL (Interface
Description Language) function
prototypes.

e M— An array of MATLAB function
prototypes.

e C — An array of C-Language
function prototypes.

e VB — An array of VBA function

prototypes
Examples
Function Call Returns
Info = componentinfo Information for all installed
components.

Info = Information for all revisions
componentinfo('mycomponent’) of mycomponent.

Info = Information for revision 1.0

componentinfo('mycomponent',1,0) of mycomponent.

7-5

comtool

Pu rpose Open graphical user interface to MATLAB Builder for COM
Syntax comtool
Description The comtool command displays the MATLAB Builder window, which is

the graphical user interface (GUI) for MATLAB Builder for COM.

«): MATLAB Builder

File Project Build Component Help
rProject File Build Statu
A File |
ProjectFiles
Edit BErmaye E{ear

7-6

Utility Library

Referencing the Utility Classes
(p. 8-2)

Utility Library Classes (p. 8-3)

Enumerations (p. 8-31)

Referencing the classes in your
programming environment

Describes the classes provided in the
Utility Library.

Describes the three provided sets of
constants.

8 Utility Library

Referencing the Utility Classes

8-2

This section describes the MWComUtil library provided with MATLAB Builder
for COM. This library is freely distributable and includes several functions
used in array processing, as well as type definitions used in data conversion.
This library is contained in the file mwcomutil.d11. It must be registered once
on each machine that uses COM Builder components.

Register the MWComUtil library at the DOS command prompt with the
command

mwregsvr mwcomutil.dll

The MWComUtil library includes seven classes (see “Utility Library Classes”
on page 8-3) and three enumerated types (see “Enumerations” on page 8-31).
Before using these types, you must make explicit references to the MWComUtil
type libraries in the Visual Basic IDE. To do this select Tools>References
from the main menu of the VB editor. The References dialog box appears
with a scrollable list of available type libraries. From this list select
MWComUtil 1.0 Type Library and click OK.

Utility Library Classes

Utility Library Classes

The MATLAB Builder for COM Utility library provides several classes:

“Class MWUtil” on page 8-3
“Class MWFlags” on page 8-10
“Class MWStruct” on page 8-16
“Class MWField” on page 8-23
“Class MWComplex” on page 8-24
“Class MWSparse” on page 8-26
“Class MWArg” on page 8-29

Class MWUIil

The MWUtil class contains a set of static utility methods used in array
processing and application initialization. This class is implemented internally
as a singleton (only one global instance of this class per instance of Excel). It
is most efficient to declare one variable of this type in global scope within each
module that uses it. The methods of MWUtil are

“Sub MWInitApplication(pApp As Object)” on page 8-3
“Sub MWPack(pVarArg, [Var0], [Varl], ... ,[Var31])” on page 8-5

“Sub MWUnpack(VarArg, [nStartAt As Long], [bAutoResize As Boolean =
False], [pVar0], [pVarl], ..., [pVar31])” on page 8-6

“Sub MWDate2VariantDate(pVar)” on page 8-8

The function prototypes use Visual Basic syntax.

Sub MWinitApplication(pApp As Obiject)

Initializes the library with the current instance of Excel.

8-3

8 Utility Library

8-4

Parameters.
Argument Type Description
pApp Object A valid reference to
the current Excel
application

Return Value. None.

Remarks. This function must be called once for each session of Excel that
uses COM Builder components. An error is generated if a method call is
made to a member class of any COM Builder component, and the library has
not been initialized.

Example. This Visual Basic sample initializes the MWComUtil library with
the current instance of Excel. A global variable of type Object named MCLUtil
holds an instance of the MWUtil class, and another global variable of type
Boolean named bModuleInitialized stores the status of the initialization
process. The private subroutine InitModule () creates an instance of the
MWComUtil class and calls the MWInitApplication method with an argument
of Application. Once this function succeeds, all subsequent calls exit without
recreating the object.

Dim MCLUtil As Object
Dim bModuleInitialized As Boolean

Private Sub InitModule()
If Not bModuleInitialized Then
On Error GoTo Handle Error
If MCLUtil Is Nothing Then
Set MCLUtil = CreateObject("MWComUtil.MWUtil")
End If
Call MCLUtil.MWInitApplication(Application)
bModuleInitialized = True
Exit Sub
Handle_Error:
bModuleInitialized = False
End If
End Sub

Utility Library Classes

Sub MWPack(pVarArg, [Var0], [Varl], ... ,[Var31])

Packs a variable length list of Variant arguments into a single Variant
array. This function is typically used for creating a varargin cell from a list
of separate inputs. Each input in the list is added to the array only if it is
nonempty and nonmissing. (In Visual Basic, a missing parameter is denoted
by a Variant type of vbError with a value of &H80020004.)

Parameters.
Argument Type Description
pVvarArg Variant Receives the resulting
array
[Var0], [Varil], ... |Variant Optional list of

Variants to pack into
the array. From 0 to

32 arguments can be

passed.

Return Value. None.

Remarks. This function always frees the contents of pVarArg before
processing the list.

Example. This example uses MWPack in a formula function to produce a
varargin cell to pass as an input parameter to a method compiled from a
MATLAB function with the signature

function y = mysum(varargin)
y = sum([varargin{:}1);

The function returns the sum of the elements in varargin. Assume that this
function is a method of a class named myclass that is included in a component
named mycomponent with a version of 1.0. The Visual Basic function allows
up to 10 inputs, and returns the result y. If an error occurs, the function
returns the error string. This function assumes that MWInitApplication
has been previously called.

8-5

8 Utility Library

Function mysum(Optional VO As Variant, _
Optional V1 As Variant, _
Optional V2 As Variant, _
Optional V3 As Variant, _
Optional V4 As Variant, _
Optional V5 As Variant, _
Optional V6 As Variant, _
Optional V7 As Variant, _
Optional V8 As Variant, _
Optional V9 As Variant) As Variant

Dim y As Variant

Dim varargin As Variant

Dim aClass As Object

Dim auUtil As Object

On Error Goto Handle_Error
Set aClass = CreateObject("mycomponent.myclass.1 _0")
Set aUtil = CreateObject("MWComUtil.MWUtil")
Call auUtil.MwPack(varargin,vo,vi,v2,V3,v4,V5,V6,V7,V8,V9)
Call aClass.mysum(1, y, varargin)
mysum =y
Exit Function
Handle_Error:
mysum = Err.Description
End Function

Sub MWUnpack(VarArg, [nStartAt As Long], [bAutoResize As
Boolean = False], [pVar0], [pVarl], ..., [pVar31])

Unpacks an array of Variants into individual Variant arguments. This
function provides the reverse functionality of MWPack and is typically used to
process a varargout cell into individual Variants.

8-6

Utility Library Classes

Parameters.

Argument

Type

Description

VarArg

Variant

Input array of Variants
to be processed

nStartAt

Long

Optional starting
index (zero-based)

in the array to begin
processing. Default = 0.

bAutoResize

Boolean

Optional auto-resize
flag. If this flag is
True, any Excel range
output arguments

are resized to fit the
dimensions of the
Variant to be copied.
The resizing process is
applied relative to the
upper left corner of the
supplied range. Default
= False.

[pVarO],[pVari],

Variant

Optional list of
Variants to receive the
array items contained
in VarArg. From 0 to
32 arguments can be
passed.

Return Value. None.

Remarks. This function can process a Variant array in one single call or
through multiple calls using the nStartAt parameter.

Example. This example uses MWUnpack to process a varargout cell into
several Excel ranges, while auto-resizing each range. The varargout
parameter is supplied from a method that has been compiled from the

MATLAB function.

8-7

8 Utility Library

function varargout = randvectors

for

end

i=1:nargout
varargout{i} = rand(i,1);

This function produces a sequence of nargout random column vectors, with
the length of the ith vector equal to i. Assume that this function is included in
a class named myclass that is included in a component named mycomponent
with a version of 1.0. The Visual Basic subroutine takes no arguments and
places the results into Excel columns starting at A1, B1, C1, and D1. If an
error occurs, a message box displays the error text. This function assumes
that MWInitApplication has been previously called.

Sub GenVectors()

Dim
Dim
Dim
Dim
Dim
Dim
Dim

aClass As Object
aUtil As Object
v As Variant
R1 As Range
R2 As Range
R3 As Range
R4 As Range

On Error GoTo Handle Error

Set
Set
Set
Set
Set
Set

aClass = CreateObject("mycomponent.myclass.1_0")
aUtil = CreateObject("MWComUtil.MWUtil")

R1 = Range("A1")

R2 Range("B1")

R3 Range("C1")

R4 = Range("D1")

Call aClass.randvectors(4, v)
Call auUtil.MwWUnpack(v,0,True,R1,R2,R3,R4)
Exit Sub
Handle_Error:
MsgBox (Err.Description)

End Sub

Sub MWDate2VariantDate(pVar)
Converts output dates from MATLAB to Variant dates.

8-8

Utility Library Classes

Parameters.
Argument Type Description
pvar Variant Variant to be converted

Return Value. None.

Remarks. MATLAB handles dates as double-precision floating-point
numbers with 0.0 representing 0/0/00 00:00:00. By default, numeric dates
that are output parameters from compiled MATLAB functions are passed
as Doubles that need to be decremented by the COM date bias as well as
coerced to COM dates. The MWDate2VariantDate method performs this
transformation and additionally converts dates in string form to COM date

types.

Example. This example uses MWDate2VariantDate to process numeric dates
returned from a method compiled from the following MATLAB function.

function x = getdates(n, inc)
y = now,
for i=1:n
x(i,1) =y + (i-1)*inc;
end

This function produces an n-length column vector of numeric values
representing dates starting from the current date and time with each element
incremented by inc days. Assume that this function is included in a class
named myclass that is included in a component named mycomponent with

a version of 1.0. The subroutine takes an Excel range and a Double as
inputs and places the generated dates into the supplied range. If an error
occurs, a message box displays the error text. This function assumes that
MWInitApplication has been previously called.

Sub GenDates(R As Range, inc As Double)
Dim aClass As Object
Dim auUtil As Object

On Error GoTo Handle Error
Set aClass = CreateObject("mycomponent.myclass.1_0")

8-9

8 Utility Library

Set aUtil = CreateObject("MWComUtil.MWUtil")
Call aClass.getdates(1, R, R.Rows.Count, inc)
Call autil.MwDate2VariantDate(R)
Exit Sub

Handle_Error:
MsgBox (Err.Description)

End Sub

Class MWFlags

The MWFlags class contains a set of array formatting and data conversion
flags (See “Data Conversion Rules” on page 6-8 for more information on
conversion between MATLAB and COM Automation types). All COM Builder
components contain a reference to an MWFlags object that can modify data
conversion rules at the object level. This class contains these properties:

® “Property ArrayFormatFlags As MWArrayFormatFlags” on page 8-10

® “Property DataConversionFlags As MWDataConversionFlags” on page 8-13

® “Sub Clone(ppFlags As MWFlags)” on page 8-15

Property ArrayFormatFlags As MWArrayFormatFlags

The ArrayFormatFlags property controls array formatting (as a matrix
or a cell array) and the application of these rules to nested arrays. The
MWArrayFormatFlags class is a noncreatable class accessed through an
MWFlags class instance. This class contains six properties:

® “Property InputArrayFormat As mwArrayFormat” on page 8-11

* “Property InputArrayIndFlag As Long” on page 8-11

® “Property OutputArrayFormat As mwArrayFormat” on page 8-12

e “Property OutputArrayIndFlag As Long” on page 8-12

® “Property AutoResizeOutput As Boolean” on page 8-13

® “Property TransposeOutput As Boolean” on page 8-13

8-10

Utility Library Classes

Property InputArrayFormat As mwArrayFormat. This property of type
mwArrayFormat controls the formatting of arrays passed as input parameters
to COM Builder class methods. The default value is mwArrayFormatMatrix.
The behaviors indicated by this flag are listed in the next table.

Array Formatting Rules for Input Arrays

Value Behavior

mwArrayFormatAsIs Converts arrays according to the
default conversion rules listed in
“Data Conversion Rules” on page
6-8.

mwArrayFormatCell Coerces all arrays into cell arrays.
Input scalar or numeric array
arguments are converted to cell
arrays with each cell containing a
scalar value for the respective index.

mwArrayFormatMatrix Coerces all arrays into matrices.
When an input argument is
encountered that is an array of
Variants (the default behavior is
to convert it to a cell array), the
data converter converts this array
to a matrix if each Variant is
single valued, and all elements are
homogeneous and of a numeric type.
If this conversion is not possible,
creates a cell array.

Property InputArrayindFlag As Long. This property governs the level at
which to apply the rule set by the InputArrayFormat property for nested
arrays (an array of Variants is passed and each element of the array is an
array itself). It is not necessary to modify this flag for varargin parameters.
The data conversion code automatically increments the value of this flag by
1 for varargin cells, thus applying the InputArrayFormat flag to each cell
of a varargin parameter. The default value is 0.

8-11

8 Utility Library

8-12

Property OutputArrayFormat As mwArrayFormat. This property of type
mwArrayFormat controls the formatting of arrays passed as output parameters
to COM Builder class methods. The default value is mwArrayFormatAsIs. The
behaviors indicated by this flag are listed in the next table.

Array Formatting Rules for Output Arrays

Value Behavior

mwArrayFormatAsIs Converts arrays according to the
default conversion rules listed
in MATLAB to COM VARIANT
Conversion Rules on page 6-11.

mwArrayFormatMatrix Coerces all arrays into matrices.
When an output cell array argument
is encountered (the default behavior
converts it to an array of Variants),
the data converter converts this
array to a Variant that contains a
simple numeric array if each cell is
single valued, and all elements are
homogeneous and of a numeric type.
If this conversion is not possible, an
array of Variants is created.

mwArrayFormatCell Coerces all output arrays into
arrays of Variants. Output scalar
or numeric array arguments are
converted to arrays of Variants,
each Variant containing a scalar
value for the respective index.

Property OutputArrayindFlag As Long. This property is similar to the
InputArrayIndFalg property, as it governs the level at which to apply the
rule set by the OutputArrayFormat property for nested arrays. As with
the input case, this flag is automatically incremented by 1 for a varargout
parameter. The default value of this flag is 0.

Utility Library Classes

Property AutoResizeOutput As Boolean. This flag applies to Excel ranges
only. When the target output from a method call is a range of cells in an Excel
worksheet, and the output array size and shape is not known at the time of the
call, setting this flag to True instructs the data conversion code to resize each
Excel range to fit the output array. Resizing is applied relative to the upper
left corner of each supplied range. The default value for this flag is False.

Property TransposeOutput As Boolean. Setting this flag to True
transposes the output arguments. This flag is useful when processing an
output parameter from a method call on an COM Builder component, where
the MATLAB function returns outputs as row vectors, and you desire to place
the data into columns. The default value for this flag is False.

Property DataConversionFlags As MWDataConversionFlags
The DataConversionFlags property controls how input variables are
processed when type coercion is needed. The MWDataConversionFlags class
is a noncreatable class accessed through an MWFlags class instance. This
class contains these properties:

® “Property CoerceNumericToType As mwDataType” on page 8-13

® “Property InputDateFormat As mwDateFormat” on page 8-14

e “Example” on page 8-14

® “PropertyOutputAsDate As Boolean” on page 8-15

* “PropertyDateBias As Long” on page 8-15

Property CoerceNumericToType As mwDataType. This property
converts all numeric input arguments to one specific MATLAB type. This
flag is useful is when variables maintained within the Visual Basic code are
different types, e.g., Long, Integer, etc., and all variables passed to the
compiled MATLAB code must be doubles. The default value for this property
is mwTypeDefault, which uses the default rules in COM VARIANT to MATLAB

Conversion Rules on page 6-15COM VARIANT to MATLAB Conversion Rules
on page 6-15.

8-13

8 Utility Library

8-14

Property InputDateFormat As mwDateFormat. This property converts
dates passed as input parameters to method calls on COM Builder classes.
The default value is mwDateFormatNumeric. The behaviors indicated by this
flag are shown in the following table..

Conversion Rules for Input Dates

Value Behavior

mwDateFormatNumeric Convert dates to numeric values as
indicated by the rule listed in COM
VARIANT to MATLAB Conversion
Rules on page 6-15.

mwDateFormatString Convert input dates to strings.

Example. This example uses data conversion flags to reshape the output
from a method compiled from a MATLAB function that produces an output
vector of unknown length.

function p = myprimes(n)
if length(n)~=1, error('N must be a scalar'); end
if n <2, p = zeros(1,0); return, end

p =1:2:n;
q = length(p);
p(1) = 2;

for k = 3:2:sqrt(n)
if p((k+1)/2)
P(((k*k+1)/2):kiq) = 0;
end
end
p = (p(p>0));

This function produces a row vector of all the prime numbers between 0 and
n. Assume that this function is included in a class named myclass that

is included in a component named mycomponent with a version of 1.0. The
subroutine takes an Excel range and a Double as inputs, and places the
generated prime numbers into the supplied range. The MATLAB function
produces a row vector, although you want the output in column format. It also
produces an unknown number of outputs, and you do not want to truncate
any output. To handle these issues, set the TransposeOutput flag and the

Utility Library Classes

AutoResizeOQutput flag to True. In previous examples, the Visual Basic
CreateObject function creates the necessary classes. This example uses an
explicit type declaration for the aClass variable. As with previous examples,
this function assumes that MWInitApplication has been previously called.

Sub GenPrimes(R As Range, n As Double)
Dim aClass As mycomponent.myclass

On Error GoTo Handle_Error
Set aClass = New mycomponent.myclass
aClass.MWFlags.ArrayFormatFlags.AutoResizeQutput = True
aClass.MWFlags.ArrayFormatFlags.TransposeOutput = True
Call aClass.myprimes(1, R, n)
Exit Sub

Handle_Error:
MsgBox (Err.Description)

End Sub

PropertyOutputAsDate As Boolean. This property processes an output
argument as a date. By default, numeric dates that are output parameters
from compiled MATLAB functions are passed as Doubles that need to be
decremented by the COM date bias (693960) as well as coerced to COM dates.
Set this flag to True to convert all output values of type Double.

PropertyDateBias As Long. This property sets the date bias for performing
COM to MATLAB numeric date conversions. The default value of this
property is 693960, representing the difference between the COM Date type
and MATLAB numeric dates. This flag allows existing MATLAB code that
already performs the increment of numeric dates by 693960 to be used
unchanged with COM Builder components. To process dates with such code,
set this property to 0.

Sub Clone(ppFlags As MWFlags)
Creates a copy of an MWFlags object.

8-15

8 Utility Library

Parameters.
Argument Type Description
ppFlags MWFlags Reference to an

uninitialized MWFlags
object that receives the

copy

Return Value. None

Remarks. Clone allocates a new MWFlags object and creates a deep copy of
the object’s contents. Call this function when a separate object is required
instead of a shared copy of an existing object reference.

Class MWStruct

The MWStruct class passes or receives a Struct type to or from a compiled
class method. This class contains seven properties/methods:

® “Sub Initialize([varDims], [varFieldNames])” on page 8-16

e “Property Item([i0], [il], ..., [i31]) As MWField” on page 8-18

® “Property NumberOfFields As Long” on page 8-21

® “Property NumberOfDims As Long” on page 8-21

® “Property Dims As Variant” on page 8-21

® “Property FieldNames As Variant” on page 8-21

® “Sub Clone(ppStruct As MWStruct)” on page 8-22

Sub Initialize([varDims], [varFieldNames])

This method allocates a structure array with a specified number and size of
dimensions and a specified list of field names.

8-16

Utility Library Classes

Parameters.
Argument Type Description
varDims Variant Optional array of
dimensions
varFieldNames Variant Optional array of field
names

Return Value. None.

Remarks. When created, an MWStruct object has a dimensionality of 1-by-1
and no fields. The Initialize method dimensions the array and adds a set of
named fields to each element. Each time you call Initialize on the same
object, it is redimensioned. If you do not supply the varDims argument, the
existing number and size of the array’s dimensions unchanged. If you do not
supply the varFieldNames argument, the existing list of fields is not changed.
Calling Initialize with no arguments leaves the array unchanged.

Example. The following Visual Basic code illustrates use of the Initialize
method to dimension struct arrays.

Sub foo ()
Dim x As MWStruct
Dim y As MWStruct

On Error Goto Handle_Error

'Create 1X1 struct arrays with no fields for x, and y
Set x = new MWStruct

Set y new MWStruct

'"Initialize x to be 2X2 with fields "red", "green", and "blue"
Call x.Initialize(Array(2,2), Array('red", "green", "blue"))
'Initialize y to be 1X5 with fields "name" and "age"

Call y.Initialize(5, Array("name", "age"))

'Re-dimension x to be 3X3 with the same field names
Call x.Initialize(Array(3,3))

'Add a new field to y

8-17

8 Utility Library

Call y.Initialize(, Array('name", "age", "salary"))

Exit Sub
Handle_Error:

MsgBox (Err.Description)
End Sub

Property ltem([i0], [i1], ..., [(31]) As MWField
The Item property is the default property of the MWStruct class. This property
is used to set/get the value of a field at a particular index in the structure

array.
Parameters.
Argument Type Description
i0,it, ..., i31 Variant Optional index

arguments. Between 0
and 32 index arguments
can be entered. To
reference an element
of the array, specify all
indexes as well as the
field name.

Remarks. When accessing a named field through this property, you must
supply all dimensions of the requested field as well as the field name. This
property always returns a single field value, and generates a bad index error
if you provide an invalid or incomplete index list. Index arguments have
four basic formats:

¢ Field name only
This format may be used only in the case of a 1-by-1 structure array and
returns the named field’s value. For example:

x("red") = 0.2
x("green") = 0.4
X("blue") = 0.6

8-18

Utility Library Classes

In this example, the name of the Item property was neglected. This is
possible since the Item property is the default property of the MWStruct
class. In this case the two statements are equivalent:

x.Item("red") = 0.2
x("red") = 0.2

¢ Single index and field name

This format accesses array elements through a single subscripting notation. A
single numeric index n followed by the field name returns the named field on
the nth array element, navigating the array linearly in column-major order.
For example, consider a 2-by-2 array of structures with fields "red", "green"
,and "blue" stored in a variable x. These two statements are equivalent:

y = x(2, "red")
y = x(2, 1, "red")

e All indices and field name

This format accesses an array element of an multidimensional array by
specifying n indices. These statements access all four of the elements of the

array in the previous example:

For I From 1 To 2
For J From 1 To 2
r(I, J) = x(I, J, "red")
9(1, J) "green")
b(I, J) "blue")

I n

x
—
[

Next
Next

® Array of indices and field name

This format accesses an array element by passing an array of indices and a
field name. The next example rewrites the previous example using an index

array:

Dim Index(1 To 2) As Integer

8-19

8 Utility Library

For I From 1 To 2

Index(1) =1
For J From 1 To 2
Index(2) = J
r(I, J) = x(Index, "red")
g(I, J) = x(Index, "green")
b(I, J) = x(Index, "blue")
Next

Next

With these four formats, the Item property provides a very flexible indexing
mechanism for structure arrays. Also note:

® You can combine the last two indexing formats. Several index arguments
supplied in either scalar or array format are concatenated to form one
index set. The combining stops when the number of dimensions has been
reached. For example:

Dim Index1(1 To 2) As Integer
Dim Index2(1 To 2) As Integer

Index1(1) = 1
Index1(2) = 1
Index2(1) = 3
Index2(2) = 2

x(Index1, Index2, 2, "red") = 0.5

The last statement resolves to
x(1, 1, 3, 2, 2, "red") = 0.5

® The field name must be the last index in the list. The following statement
produces an error:

y = x("blue", 1, 2)

* TField names are case sensitive.

8-20

Utility Library Classes

Property NumberOfFields As Long

The read-only NumberOfFields property returns the number of fields in the
structure array.

Property NumberOfDims As Long

The read-only NumberOfDims property returns the number of dimensions in
the struct array.

Property Dims As Variant

The read-only Dims property returns an array of length Number0fDims that
contains the size of each dimension of the struct array.

Property FieldNames As Variant

The read-only FieldNames property returns an array of length
NumberOfFields that contains the field names of the elements of the structure
array.

Example. The next Visual Basic code sample illustrates how to access a
two-dimensional structure array’s fields when the field names and dimension
sizes are not known in advance.

Sub foo ()
Dim x As MWStruct
Dim Dims as Variant
Dim FieldNames As Variant

On Error Goto Handle Error

'... Call a method that returns an MWStruct in x
Dims = x.Dims
FieldNames = x.FieldNames
For I From 1 To Dims(1)
For J From 1 To Dims(2)
For K From 1 To x.NumberOfFields
y = x(I,J,FieldNames(K))
' . Do something with y

8-21

8 Utility Library

Next
Next

Next

Exit Sub
Handle_E

rror:

MsgBox (Err.Description)

End Sub

Sub Clone(ppStruct As MWStruct)
Creates a copy of an MWStruct object.

Parameters.
Argument Type Description
ppStruct MWStruct Reference to an

uninitialized MWStruct
object to receive the

copy

Return Value. None

Remarks. Clone allocates a new MWStruct object and creates a deep copy
of the object’s contents. Call this function when a separate object is required
instead of a shared copy of an existing object reference.

Example. The following Visual Basic example illustrates the difference
between assignment and Clone for MWStruct objects.

Sub foo
Dim
Dim
Dim
On E
Set

x1("
x1("

8-22

()
x1 As MWStruct

x2 As MWStruct
x3 As MWStruct

rror Goto Handle_ Error
x1 = new MWStruct
name") = "John Smith"
age") = 35

Utility Library Classes

'Set reference of x1 to x2

Set x2 = x1

'Create new object for x3 and copy contents of x1 into it

Call x1.Clone(x3)

'x2's "age" field is also modified 'x3's "age" field unchanged
x1("age") = 50

Exit Sub
Handle_Error:

MsgBox (Err.Description)
End Sub

Class MWField

The MWField class holds a single field reference in an MWStruct object. This
class is noncreatable and contains four properties/methods:

“Property Name As String” on page 8-23

“Property Value As Variant” on page 8-23
“Property MWFlags As MWFlags” on page 8-23
“Sub Clone(ppField As MWField)” on page 8-24

Property Name As String
The name of the field (read only).

Property Value As Variant

Stores the field’s value (read/write). The Value property is the default
property of the MWField class. The value of a field can be any type that is
coercible to a Variant, as well as object types.

Property MWFlags As MWFlags

Stores a reference to an MWFlags object. This property sets or gets the array
formatting and data conversion flags for a particular field. Each field in a

8-23

8 Utility Library

8-24

structure has its own MWFlags property. This property overrides the value of
any flags set on the object whose methods are called.

Sub Clone(ppField As MWField)
Creates a copy of an MWField object.

Parameters.
Argument Type Description
ppField MWField Reference to an

uninitialized MWField
object to receive the

copy

Return Value. None.

Remarks. Clone allocates a new MWField object and creates a deep copy of
the object’s contents. Call this function when a separate object is required
instead of a shared copy of an existing object reference.

Class MWComplex

The MWComplex class passes or receives a complex numeric array into or from
a compiled class method. This class contains four properties/methods:

“Property Real As Variant” on page 8-24

“Property Imag As Variant” on page 8-25
“Property MWFlags As MWFlags” on page 8-26

“Sub Clone(ppComplex As MWComplex)” on page 8-26

Property Real As Variant

Stores the real part of a complex array (read/write). The Real property is the
default property of the MWComplex class. The value of this property can be any
type coercible to a Variant, as well as object types, with the restriction that
the underlying array must resolve to a numeric matrix (no cell data allowed).

Utility Library Classes

Valid Visual Basic numeric types for complex arrays include Byte, Integer,
Long, Single, Double, Currency, and Variant/vbDecimal.

Property Imag As Variant

Stores the imaginary part of a complex array (read/write). The Imag property
is optional and can be Empty for a pure real array. If the Imag property is
nonempty and the size and type of the underlying array do not match the size
and type of the Real property’s array, an error results when the object is
used in a method call.

Example. The following Visual Basic code creates a complex array with
the following entries:

x = [1+1 1+2i
2+i 2+21]
Sub foo()
Dim x As MWComplex
Dim rval(1 To 2, 1 To 2) As Double
Dim ival(1 To 2, 1 To 2) As Double

On Error Goto Handle_Error
For I =1 To 2
For d =1 To 2
rval(I,d) =
ival(I,J)

I |
C H

Next
Next
Set x = new MWComplex
x.Real = rval
x.Imag = ival

Exit Sub
Handle_Error:

MsgBox (Err.Description)
End Sub

8-25

8 Utility Library

8-26

Property MWFlags As MWFlags

Stores a reference to an MWFlags object. This property sets or gets the array
formatting and data conversion flags for a particular complex array. Each
MWComplex object has its own MWFlags property. This property overrides the
value of any flags set on the object whose methods are called.

Sub Clone(ppComplex As MWComplex)
Creates a copy of an MWComplex object.

Parameters.
Argument Type Description
ppComplex MWComplex Reference to

an uninitialized
MWComplex object to
receive the copy

Return Value. None

Remarks. Clone allocates a new MWComplex object and creates a deep copy
of the object’s contents. Call this function when a separate object is required
instead of a shared copy of an existing object reference.

Class MWSparse

The MWSparse class passes or receives a two-dimensional sparse numeric array
into or from a compiled class method. This class has seven properties/methods:
® “Property NumRows As Long” on page 8-27

e “Property NumColumns As Long” on page 8-27

* “Property RowIndex As Variant” on page 8-27

® “Property ColumnIndex As Variant” on page 8-27

® “Property Array As Variant” on page 8-27

* “Property MWFlags As MWFlags” on page 8-28

® “Sub Clone(ppSparse As MWSparse)” on page 8-28

Utility Library Classes

Property NumRows As Long

Stores the row dimension for the array. The value of NumRows must be
nonnegative. If the value is zero, the row index is taken from the maximum
of the values in the RowIndex array.

Property NumColumns As Long

Stores the column dimension for the array. The value of NumColumns must be
nonnegative. If the value is zero, the row index is taken from the maximum of
the values in the ColumnIndex array.

Property RowIndex As Variant

Stores the array of row indices of the nonzero elements of the array. The value
of this property can be any type coercible to a Variant, as well as object types,
with the restriction that the underlying array must resolve to or be coercible
to a numeric matrix of type Long. If the value of NumRows is nonzero and any
row index is greater than NumRows, a bad-index error occurs. An error also
results if the number of elements in the RowIndex array does not match the
number of elements in the Array property’s underlying array.

Property Columnindex As Variant

Stores the array of column indices of the nonzero elements of the array. The
value of this property can be any type coercible to a Variant, as well as object
types, with the restriction that the underlying array must resolve to or be
coercible to a numeric matrix of type Long. If the value of NumColumns is
nonzero and any column index is greater than NumColumns, a bad-index error
occurs. An error also results if the number of elements in the ColumnIndex
array does not match the number of elements in the Array property’s
underlying array.

Property Array As Variant

Stores the nonzero array values of the sparse array. The value of this property
can be any type coercible to a Variant, as well as object types, with the
restriction that the underlying array must resolve to or be coercible to a
numeric matrix of type Double or Boolean.

8-27

8 Utility Library

8-28

Property MWFlags As MWFlags

Stores a reference to an MWFlags object. This property sets or gets the array
formatting and data conversion flags for a particular sparse array. Each
MWSparse object has its own MWFlags property. This property overrides the
value of any flags set on the object whose methods are called.

Sub Clone(ppSparse As MWSparse)

Creates a copy of an MWSparse object.

Parameters.
Argument Type Description
ppSparse MWSparse Reference to an

uninitialized MWSparse
object to receive the

copy

Return Value. None.

Remarks. Clone allocates a new MWSparse object and creates a deep copy
of the object’s contents. Call this function when a separate object is required
instead of a shared copy of an existing object reference.

Example. The following Visual Basic sample creates a 5-by-5 tridiagonal
sparse array with the following entries:

0o O
-1 0
2 -1
-1 2 .
0o -1

N =+ O OO0

-1
2
-1
0
0

Dim x As MWSparse

Dim rows(1 To 13) As Long
Dim cols(1 To 13) As Long
Dim vals(1 To 13) As Double

Utility Library Classes

Dim I As Long, K As Long

On Error GoTo Handle_Error
K=1
For I =1
rows (
cols(
vals(
K=K
rows (
cols(
(
K
(
(
(
K

In = 1

vals
K =
rows
cols

In = 1

| ~ = <
1l
[¢)]

New MWSparse
X.NumRows = 5
.NumColumns = 5
.RowIndex = rows
.ColumnIndex = cols
.Array = vals

Exit Sub
Handle_Error:

MsgBox (Err.Description)
End Sub

Class MWArg

The MWArg class passes a generic argument into a compiled class method. This
class passes an argument for which the data conversion flags are changed for
that one argument. This class has three properties/methods:

8-29

8 Utility Library

8-30

® “Property Value As Variant” on page 8-30
* “Property MWFlags As MWFlags” on page 8-30
e “Sub Clone(ppArg As MWArg)” on page 8-30

Property Value As Variant
The Value property stores the actual argument to pass. Any type that can be
passed to a compiled method is valid for this property.

Property MWFlags As MWFlags

Stores a reference to an MWFlags object. This property sets or gets the array
formatting and data conversion flags for a particular argument. Each MWArg
object has its own MWFlags property. This property overrides the value of any
flags set on the object whose methods are called.

Sub Clone(ppArg As MWArg)
Creates a copy of an MWArg object.

Parameters.
Argument Type Description
pPpArg MWArg Reference to an

uninitialized MWArg
object to receive the

copy

Return Value. None.

Remarks. Clone allocates a new MWArg object and creates a deep copy of the
object’s contents. Call this function when a separate object is required instead
of a shared copy of an existing object reference.

Enumerations

Enumerations

The MATLAB Builder for COM Utility library provides three enumerations
(sets of constants):

¢ “Enum mwArrayFormat” on page 8-31

¢ “Enum mwDataType” on page 8-31

¢ “Enum mwDateFormat” on page 8-32

Enum mwArrayFormat

The mwArrayFormat enumeration is a set of constants that denote an array
formatting rule for data conversion.

mwArrayFormat Values

Constant Numeric Value Description

mwArrayFormatAsIs 0 Do not reformat the
array.

mwArrayFormatMatrix |1 Format the array as a
matrix.

mwArrayFormatCell 2 Format the array as a
cell array.

Enum mwDataType

The mwDataType enumeration is a set of constants that denote a MATLAB
numeric type.

mwDataType Values

Constant Numeric Value MATLAB Type
mwTypeDefault 0 N/A
mwTypelLogical 3 logical
mwTypeChar 4 char

8-31

8 uiility Library

mwDataType Values (Continued)

Constant Numeric Value MATLAB Type
mwTypeDouble 6 double
mwTypeSingle 7 single
mwTypeInt8 8 int8
mwTypeUint8 9 uint8
mwTypelInti16 10 int16
mwTypeUint16 11 uint16
mwTypeInt32 12 int32
mwTypeUint32 13 uint32

Enum mwDateFormat

The mwDateFormat enumeration is a set of constants that denote a formatting
rule for dates.

mwDateFormat Values

Constant Numeric Value Description

mwDateFormatNumeric | O Format dates as
numeric values

mwDateFormatString 1 Format dates as strings

8-32

Examples

Use this list to find examples in the documentation.

A Examples

Calling a COM Object in a C++ Program

“Calling a COM Object in a C++ Program” on page 3-12

Passing Arguments

Passing Arguments

“Creating and Using a varargin Array in Visual Basic Programs” on page
3-21

“Creating and using varargout in Visual Basic programs” on page 3-22
“Using Array Formatting Flags” on page 3-25

“Using Data Conversion Flags” on page 3-26

A Examples

Using MATLAB Global Variables

“Using MATLAB Global Variables in Visual Basic” on page 3-30

Querying the Registry

Querying the Registry

“Obtaining Registry Information” on page 3-33

A Examples

Basic Usage Example: Visual Basic
“Magic Square Example” on page 4-2

Creating a Comprehensive Excel Add-in

Creating a Comprehensive Excel Add-in
“Spectral Analysis Example” on page 4-11

A Examples

Comprehensive Examples

“Univariate Interpolation” on page 4-27
“Matrix Calculator” on page 4-39

A

access 3-3

array formatting flags 3-23

C
capabilities 6-2
.cbl file 1-5
class method
calling 3-6
Class MWFlags 8-10
Class MWUtil 8-3
class name 1-10
changing default 1-4
class properties
properties, class 3-30
COM
defined 1-10
COM class
producing 6-22
COM VARIANT 6-8
comltool
purpose 2-2

command line interface 1-12

component
access 3-3
component name 1-4

Component Object Model (COM)

defined 1-10

componentinfo function 7-2

comtool function 7-6

CreateObject function 3-6

D

data conversion flags 3-23
data conversion rules 6-8
DLL

Dynamic Link Library 1-4

Dynamic Link Library 1-4

Enumeration
mwArrayFormat 8-31
mwDataType 8-31
mwDateFormat 8-32

enumerations 8-31

errors
COM Builder 5-2

examples
magic square 4-2
spectral analysis 4-11

F
flags
array formatting 3-23
data conversion 3-23
G

global variables 3-30
Globally Unique Identifier (GUID) 6-5
GUID (Globally Unique Identifier) 6-5

|
IDL mapping 6-22

L

limitations 1-15

M

magic square example 4-2
MCR
MATLAB Component Runtime 1-5
methods 1-10
missing parameter 8-5
MWFlags class 8-10
mwregsvr utility 6-4

Index-1

Index

MWUtil class 8-3

New operator 3-7

P

project
creating 1-3
elements of 1-10
settings 2-6
Project
directory 1-5
version number 1-4

requirements
system 1-15
restrictions 1-15

S

self-registering component 6-4

Index-2

singleton MCR option 1-5
spectral analysis example 4-11
system requirements 1-15

T

troubleshooting 5-2
type library 6-4

U

unregistering components 6-4
utility library 8-3

v

VARIANT variable 6-8
version number 1-10 6-6
versioning 1-10

versioning rules 6-7
Visual Basic mapping 6-24

	toc
	Getting Started
	Building a Deployable Application
	Using the New Project Settings Window
	Understanding the MATLAB Builder Window
	Files in the self-extracting executable
	What Is a Project?
	Classes and Methods
	Versions
	Using Version Numbers

	Using the Command Line Interface
	Requirements for MATLAB Builder for COM
	System Requirements
	Compiler Requirements
	Limitations and Restrictions

	Graphical User Interface
	MATLAB Builder
	The MATLAB function comtool displays the MATLAB Builder graphica
	The MATLAB Builder window has the following menus:
	File Menu
	Project Menu
	Build Menu
	Component Menu
	Help Menu

	The MATLAB Builder window also includes the following buttons:

	Project Settings Window
	Component Information Window
	Sample Component Information Window

	Package Files Window
	Here is an illustration of the Package Files window:

	Programming with COM Objects Created by MATLAB Builder for COM
	General Techniques
	Registering and Referencing the Utility Library
	Creating an Instance of a Class in Visual Basic
	CreateObject Function
	Visual Basic New Operator
	Advantages of Each Technique
	Declaring a Reusable Class Instance

	Calling the Methods of a Class Instance
	Variant
	Examples of Passing Input and Output

	Calling a COM Object in a C++ Program
	Using COM Builder to Create the Object
	Using the Component in a C++ Program

	Add Events to MATLAB Builder for COM Objects
	Using a Callback with a Visual Basic Event
	iterate.m
	progess.m

	Passing Arguments
	Creating and Using a varargin Array in Visual Basic Programs
	Creating and using varargout in Visual Basic programs

	Using Flags to Control Array Formatting and Data Conversion
	Overview
	Array Formatting Flags
	Using Array Formatting Flags
	Using Data Conversion Flags
	Special Flags for Some Visual Basic Types

	Using MATLAB Global Variables
	Using MATLAB Global Variables in Visual Basic

	Obtaining Registry Information
	Handling Errors During a Method Call

	Usage Examples
	Magic Square Example
	Creating the M-File
	Creating the Project
	Summary of Project Settings

	Building the Project
	Creating the Visual Basic Project
	Creating the User Interface
	Creating the Executable
	Testing the Application
	Packaging the Component

	Spectral Analysis Example
	Building the Component
	Integrating the Component with VBA
	Creating the Main VBA Code Module

	Creating the Visual Basic Form
	Adding The Spectral Analysis Menu Item to Excel
	Saving the Add-in
	Testing The Add-in
	Creating the Data
	Running the Test

	Package the Component

	Univariate Interpolation
	Building the Component
	Summary of Project Settings

	Building the Project
	Using the Component in Visual Basic
	Creating the Visual Basic Form

	Matrix Calculator
	Building the Component
	Summary of Project Settings

	Building the Project
	Using the Component in Visual Basic
	Creating the Visual Basic Form

	Curve Fitting
	Building the Component
	Summary of Project Settings

	Building the Project
	Using the Component in Visual Basic
	Creating the Visual Basic Form

	Bouncing Ball Simulation
	Building the Component
	Summary of Project Settings

	Building the Project
	Using the Component in Visual Basic
	Creating the Visual Basic Form

	Troubleshooting
	How MATLAB Builder for COM Works Internally
	Overview of Internal Processes
	Code Generation
	Create Interface Definitions
	C++ Compilation
	Linking and Resource Binding
	Component Registration

	Component Registration
	Self-Registering Components
	Globally Unique Identifier (GUID)
	Versioning

	Data Conversion Rules
	Array Formatting Flags
	Data Conversion Flags
	CoerceNumericToType
	InputDateFormat
	OutputAsDate As Boolean
	DateBias As Long

	Calling Conventions
	Producing a COM Class
	IDL Mapping
	Visual Basic Mapping

	Functions — Alphabetical List
	Utility Library
	Referencing the Utility Classes
	Utility Library Classes
	Class MWUtil
	Sub MWInitApplication(pApp As Object)
	Sub MWPack(pVarArg, [Var0], [Var1], ... ,[Var31])
	Sub MWUnpack(VarArg, [nStartAt As Long], [bAutoResize As Boolean
	Sub MWDate2VariantDate(pVar)

	Class MWFlags
	Property ArrayFormatFlags As MWArrayFormatFlags
	Property DataConversionFlags As MWDataConversionFlags
	Sub Clone(ppFlags As MWFlags)

	Class MWStruct
	Sub Initialize([varDims], [varFieldNames])
	Property Item([i0], [i1], ..., [i31]) As MWField
	Property NumberOfFields As Long
	Property NumberOfDims As Long
	Property Dims As Variant
	Property FieldNames As Variant
	Sub Clone(ppStruct As MWStruct)

	Class MWField
	Property Name As String
	Property Value As Variant
	Property MWFlags As MWFlags
	Sub Clone(ppField As MWField)

	Class MWComplex
	Property Real As Variant
	Property Imag As Variant
	Property MWFlags As MWFlags
	Sub Clone(ppComplex As MWComplex)

	Class MWSparse
	Property NumRows As Long
	Property NumColumns As Long
	Property RowIndex As Variant
	Property ColumnIndex As Variant
	Property Array As Variant
	Property MWFlags As MWFlags
	Sub Clone(ppSparse As MWSparse)

	Class MWArg
	Property Value As Variant
	Property MWFlags As MWFlags
	Sub Clone(ppArg As MWArg)

	Enumerations
	Enum mwArrayFormat
	Enum mwDataType
	Enum mwDateFormat

	Examples
	Calling a COM Object in a C++ Program
	Passing Arguments
	Using MATLAB Global Variables
	Querying the Registry
	Basic Usage Example: Visual Basic
	Creating a Comprehensive Excel Add-in
	Comprehensive Examples

	tables
	For More Information
	How To Use COM Builder on the Command Line
	MATLAB Builder for COM Diagnostic Messages and Suggested Solutio
	Required Locations to Develop and Use Components
	VARIANT Type Codes Supported
	MATLAB to COM VARIANT Conversion Rules
	COM VARIANT to MATLAB Conversion Rules
	Array Formatting Flags
	Registry Information Returned by componentinfo
	Array Formatting Rules for Input Arrays
	Array Formatting Rules for Output Arrays
	Conversion Rules for Input Dates
	mwArrayFormat Values
	mwDataType Values
	mwDateFormat Values

